QC Specialist Data Analytics

Dublin
1 week ago
Create job alert

QC Specialist Data Analytics

Team Horizon is seeking a QC Specialist Data Analytics for our client based in Dublin who will have a key role in Quality Transformation and the QC Optimization Initiative. The role will be responsible for applying advanced data analytics to extract actionable insights, optimize QC workflows, and drive digital transformation in quality operations.

If you are passionate about Quality Control, laboratory analytics, and data science, and want to drive the next evolution of QC digital optimization, we encourage you to apply!

Why you should apply:

  • This is an excellent opportunity to join a world class manufacturing operation, with an outstanding track record of reliably delivering high-quality medicines to patients around the world suffering serious illnesses.

  • There is a strong culture of continuous improvement and innovation within the company to strive for solutions that improve health outcomes and dramatically improve people’s lives.

  • Our client is developing the capability to produce all its medicines in Dublin, helping to ensure continuity of supply of our medicines as they expand internationally.

    What you will be doing:

  • Analyze and interpret complex QC data from laboratory instruments, manufacturing
    processes, and digital QC systems to improve decision-making and process efficiency.

  • Collaborate with QC analysts to design and implement data-driven solutions for quality improvement and regulatory compliance.

  • Assist in developing business cases and strategic recommendations for digital solution
    Developments.

  • Support the definition and advancement of a self-service reporting model. Automate QC reporting and visualization using tools such as Spotfire, Power BI, Tableau to provide real-time insights.

  • Ensure data integrity and traceability by working with structured and unstructured QC datasets from multiple laboratory sources, including LIMS, LMES, and real-time monitoring systems.

  • Optimize laboratory workflows by integrating digital tools, AI-driven analytics, and automation to enhance data collection and reporting efficiency.

  • Partner with business stakeholders to share data best practices, identify and drive business process data standardization initiatives.

  • Provide support in developing executive communications and present analysis and insights to senior leadership.

  • Support analytical reports maintenance and validation. Work closely with IT, data engineering, and digital transformation teams to enhance QC dat management and accessibility.

  • Drive innovation in digital QC strategies, leveraging big data analytics for enhanced quality monitoring and predictive quality insights.

    What you need to apply:

  • Doctorate degree and 2 years of Project Management, Quality and/or Operations experience OR Master’s degree and 6 years of Project Management, Quality and/or Operations experience OR Bachelor’s degree and 8 years of Project Management, Quality and/or Operations experience.

  • Preferred to have a Bachelor’s or Master’s degree in a relevant field such as Data Science, Chemistry, Biochemistry, Pharmaceutical Sciences, Engineering, or a related discipline.

  • 5+ years of experience in Quality Control (QC) or Manufacturing setting, with a strong focus on QC data analysis and digital optimization.

  • Deep knowledge of laboratory operations, analytical testing, quality control workflows, and regulatory requirements (e.g., GMP, GLP, FDA, ISO standards).

  • Proficiency in programming languages with emphasis on SQL, Python and R.

  • Experience with data visualization tools or packages, such as Spotfire, Power BI or Tableau.

  • Experience with LIMS, MES, ELN, and other digital QC systems to extract, analyze, and interpret complex datasets.

  • Strong background in statistical data analysis, process monitoring, and root cause investigations in QC environments.

  • Experience with advanced statistical/analytical techniques and machine learning algorithms (structured and unstructured data)

  • Experience with Databricks platform for data analytics and MLOps

  • Experience working with big data platforms, cloud-based analytics (AWS, Azure, GCP), and automation tools for QC data integration.

  • Ability to translate complex QC datasets into actionable insights to enhance laboratory efficiency, compliance, and decision-making.

  • Experience in pharmaceutical, biotech, medical device, or highly regulated industries where QC compliance is critical.

  • Expertise in data governance, audit trail management, and data security best practices in a QC setting. Expertise in QC technology and digital transformation

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 Ways AI Pros Stay Inspired: Boost Creativity with Side Projects, Hackathons & More

In the rapidly evolving world of Artificial Intelligence (AI), creativity and innovation are critical. AI professionals—whether data scientists, machine learning engineers, or research scientists—must constantly rejuvenate their thinking to solve complex challenges. But how exactly do these experts stay energised and creative in their work? The answer often lies in a combination of strategic habits, side projects, hackathons, Kaggle competitions, reading the latest research, and consciously stepping out of comfort zones. This article will explore why these activities are so valuable, as well as provide actionable tips for anyone looking to spark new ideas and enrich their AI career. Below, we’ll delve into tried-and-tested strategies that AI pros employ to drive innovation, foster creativity, and maintain an inspired outlook in an industry that can be both exhilarating and daunting. Whether you’re just starting your AI journey or you’re an experienced professional aiming to sharpen your skills, these insights will help you break out of ruts, discover fresh perspectives, and bring your boldest ideas to life.

Top 10 AI Career Myths Debunked: Key Facts for Aspiring Professionals

Artificial Intelligence (AI) is one of the most dynamic and rapidly growing sectors in technology today. The lure of AI-related roles continues to draw a diverse range of job seekers—from seasoned software engineers to recent graduates in fields such as mathematics, physics, or data science. Yet, despite AI’s growing prominence and accessibility, there remains a dizzying array of myths surrounding careers in this field. From ideas about requiring near-superhuman technical prowess to assumptions that machines themselves will replace these jobs, the stories we hear sometimes do more harm than good. In reality, the AI job market offers far more opportunities than the alarmist headlines and misconceptions might suggest. Here at ArtificialIntelligenceJobs.co.uk, we witness firsthand the myriad roles, backgrounds, and success stories that drive the industry forward. In this blog post, we aim to separate fact from fiction—taking the most pervasive myths about AI careers and debunking them with clear, evidence-based insights. Whether you are an established professional considering a career pivot into data science, or a student uncertain about whether AI is the right path, this article will help you gain a realistic perspective on what AI careers entail. Let’s uncover the truth behind the most common myths and discover the actual opportunities and realities you can expect in this vibrant sector.

Global vs. Local: Comparing the UK AI Job Market to International Landscapes

How to navigate salaries, opportunities, and work culture in AI across the UK, the US, Europe, and Asia Artificial Intelligence (AI) has evolved from a niche field of research to an integral component of modern industries—powering everything from chatbots and driverless cars to sophisticated data analytics in finance and healthcare. The job market for AI professionals is consequently booming, with thousands of new positions posted each month worldwide. In this blog post, we will explore how the UK’s AI job market compares to that of the United States, Europe, and Asia, delving into differences in job demand, salaries, and workplace culture. Additionally, we will provide insights for candidates considering remote or international opportunities. Whether you are a freshly qualified graduate in data science, an experienced machine learning engineer, or a professional from a parallel domain looking to transition into AI, understanding the global vs. local landscape can help you make an informed decision about your career trajectory. As the demand for artificial intelligence skills grows—and borders become more porous with hybrid and remote work—the possibilities for ambitious job-seekers are expanding exponentially. This article will offer a comprehensive look at the various regional markets, exploring how the UK fares in comparison to other major AI hubs. We’ll also suggest factors to consider when choosing where in the world to work, whether physically or remotely. By the end, you’ll have a clearer picture of the AI employment landscape, and you’ll be better prepared to carve out your own path.