Python Engineer, Webscraper

Edinburgh
1 year ago
Applications closed

Related Jobs

View all jobs

Data Engineer - (Python, SQL, Machine Learning) - Robotics

Machine Learning Engineer Python AWS

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Scientist

Senior Machine Learning Scientist

Overview

Ref:

Python Engineer, Webscraper

Hybrid Edinburgh

About:

Do you enjoy extracting effective data from the web then transforms it into usable formats? Are you passionate about ML and AI? Have you advanced Python skills? If so this exciting opportunity should be for you. This role will allow you to join a dynamic fintech company playing a crucial role in reshaping the norm.

Key Responsibilities:

Developing and implementing web scraping tools using Python and JavaScript.
Analysing website structures and data patterns to inform scraping strategies.
Writing efficient scripts designed to handle dynamic and complex content.
Designing extraction workflows to collect the targeted information.
Data sanitation and normalisation to feed Machine Learning.
Processing and formatting extracted data into practical, usable forms.
Performing data cleaning to ensure precision and uniformity.Essential Skills:

Advanced knowledge of Python
Working knowledge of Web scraping tools such as Beautiful Soup, Scrapy, ParseHub, OctoParse, Scraper API, Mozenda, Webhose.io, Content Grabber
Experience scraping large complex Data sets
Understanding technologies such as HTML CSS JavaScript
Exposure to manipulation libraries such as Pandas or NumPy
Working Knowledge of cloud platform such as AWS or AzureDesirable

Experience working a startup, understanding the fast-paced nature of it.
Familiarity with using python for asymmetric cryptography
Familiarity with using python for parallel processing
Exposure to Machine Learning.
Sanitising and normalising Data.Please note presence in the Edinburgh office on a regular basis is desired, therefore a reasonable commutable distance would be ideal

Reward

In return you will have the chance to work within a friendly and fast-paced business with excellent career progression plans, this is an outstanding opportunity to significantly progress your career.

Key skills

Software Engineer, Software Developer, Python, Java, JavaScript, HTML, CSS, Web scraping, Web crawling, Data extraction, Data transformation, Web scraping techniques, data parsing, CSV, Jason, Automation, Beautiful Soup, Scrapy, ParseHub, OctoParse, Scraper API, Mozenda, Webhose.io, Content Grabber Pandas, NumPy, SQL, NoSQL, AI, Machine Learning, AWS, Azure, GCP

Next Steps

Apply by contacting Gregor Brown (url removed)

Equal Opportunities

FPSG is committed to equal opportunities regardless of gender, race, disability, sexual orientation, religion or belief and age.

We are Disability Confident and neurodiverse aware. If you have a disability, please tell us if there are any reasonable adjustments we can make to assist you in your application or with your recruitment process

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.