Python Developers

Christy Media Solutions
Bath
1 year ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Experienced Recruitment Consultant – Artificial Intelligence & Bio Artificial Intelligence Manchester (Hybrid)

Data Scientist (NLP & LLM Specialist)

Senior Data Scientist

Data Scientist

Data Scientist

As a Python Developer, you'll be part of a collaborative DataOps team, working closely with the Backend Engineering Lead. Your main job will be coding and integrating with the core platform services while helping develop, deploy, and maintain our cloud platform. You’ll also work with other teams to provide data for reporting, recommendations, and analytics. What You'll Do: Design: Build solutions to meet user needs, with clear estimates of effort and risk. Code: Improve and maintain the existing codebase, writing high-quality and sustainable code. Review & Test: Review others’ code, write tests, debug issues, and ensure everything works well. Deploy: Help with deployment processes to make sure everything runs smoothly in production. Improve: Suggest improvements to our development process and tools. You'll work to meet deadlines, collaborate with teammates, and deliver great software. You’ll also help coach junior team members and assist clients with onboarding their data. What You Need: Must-Have: Proficiency in Python (OOP and scripting) AWS Serverless Experience Good communication skills Experience with Git, testing tools (Postman, Locust), and CI/CD (GitHub Actions, CircleCI) Nice-to-Have: Experience with ElasticSearch, SQL, React/TypeScript Familiarity with data science and analytics tools (Tableau, PowerBI) You’ll also support clients by helping them get their data onto the platform and fixing any issues that pop up. This is a hybrid role with two days a week in the Bath office.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.