Private Cloud Software Engineer III

JPMorgan Chase & Co.
Glasgow
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Data Scientist-Senior Manager

Data Scientist-Manager

Machine Learning Specialist

We have an exciting and rewarding opportunity for you to take your software engineering career to the next level. 

As a Private Cloud Software Engineer III at JPMorgan Chase within the Core & Foundational Cloud Platforms, you serve as a seasoned member of an agile team to design and deliver trusted market-leading technology products in a secure, stable, and scalable way. You are responsible for carrying out critical technology solutions across multiple technical areas within various business functions in support of the firm’s business objectives.

Job responsibilities

Executes software solutions, design, development, and technical troubleshooting with ability to think beyond routine or conventional approaches to build solutions or break down technical problems Creates secure and high-quality production code and maintains algorithms that run synchronously with appropriate systems Produces architecture and design artifacts for complex applications while being accountable for ensuring design constraints are met by software code development Gathers, analyzes, synthesizes, and develops visualizations and reporting from large, diverse data sets in service of continuous improvement of software applications and systems Proactively identifies hidden problems and patterns in data and uses these insights to drive improvements to coding hygiene and system architecture Contributes to software engineering communities of practice and events that explore new and emerging technologies Adds to team culture of diversity, equity, inclusion, and respect

Required qualifications, capabilities, and skills

Formal training or certification on software engineering concepts and applied experience Hands-on practical experience in system design, application development, testing, and operational stability Proficient in coding in one or more languages such as Java, C#, Python, Golang or equivalent language Proficiency in automation and continuous delivery methods, availability, scalability, and cost transparency.  Proficient in all aspects of the Software Development Life Cycle Advanced understanding of agile methodologies such as CI/CD, Application Resiliency, and Security Demonstrated proficiency in software applications and technical processes within a technical discipline (., cloud, artificial intelligence, machine learning, mobile, In-depth knowledge of the financial services industry and their IT systems,  Practical experience in cloud native, virtualization, APIs, Terraform, PowerShell, Ansible, Infrastructure-as-code. 

Preferred qualifications, capabilities, and skills

Familiarity with modern front-end technologies Exposure to cloud technologies

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.