Principal Quantitative Analyst - Sports Betting

Hard Rock Digital
Glasgow
3 months ago
Applications closed

Related Jobs

View all jobs

Principal Machine Learning Engineer - Chat

Principal Data Scientist

Head of Analytics & Data Science Decision Sciences & Machine Learning · ·

Head of Analytics & Data Science

Senior Data Scientist

Principal Data Scientist

What are we building?

Hard Rock Digital is a team focused on becoming the best online sportsbook, casino, and social casino company in the world. We're building a team that resonates passion for learning, operating, and building new products and technologies for millions of consumers. We care about each customer's interaction, experience, behavior, and insight and strive to ensure we're always acting authentically.

Rooted in the kindred spirits of Hard Rock and the Seminole Tribe of Florida, the new Hard Rock Digital taps a brand known the world over as the leader in gaming, entertainment, and hospitality. We're taking that foundation of success and bringing it to the digital space — ready to join us?

What's the position?

We are looking for a Principal Quantitative Analyst specializing in Sports Betting to join our Quantitative Sports team. As a Principal Quantitative Analyst, you will lead the development and implementation of sophisticated sports simulations and mathematical models that drive our pricing strategies and risk management in the sports betting domain. This role requires an individual who's exceptionally skilled in quantitative analysis, statistical modeling, and has a deep understanding of sports betting industry.

Key Responsibilities:

  • Develop and maintain sophisticated sports simulation models to accurately price a wide range of sports betting markets
  • Lead the creation of proprietary algorithms for odds compilation and risk management across various sports and bet types
  • Collaborate with data engineering teams to ensure efficient processing and utilization of large-scale sports datasets
  • Implement and continuously improve models for live betting, taking into account real-time data and market movements
  • Conduct in-depth analysis of betting patterns and customer behavior to refine pricing strategies and identify potential risks
  • Work closely with trading teams to provide quantitative insights and support for decision-making
  • Stay abreast of the latest developments in sports betting technologies, incorporating new methodologies as appropriate
  • Mentor and guide junior quantitative analysts, fostering a culture of innovation and analytical rigor within the team


What are we looking for?

  • Extensive experience in developing and implementing complex sports simulation models for pricing and risk assessment in sports betting
  • Strong expertise in statistical analysis, machine learning, and predictive modeling techniques applied to sports.
  • Proficiency in programming languages such as Java, Go, C++, Rust, or Python for model development and data analysis
  • Deep understanding of probability theory, stochastic processes, and their applications in sports betting
  • Experience with big data technologies and distributed computing environments for processing large volumes of sports data
  • Ability to work with real-time data feeds and develop models for live betting scenarios
  • Strong problem-solving skills and meticulous attention to detail in analyzing sports statistics and trends
  • Excellent communication skills, with the ability to present complex quantitative concepts to both technical and non-technical stakeholders
  • Leadership experience in guiding and mentoring a team of quantitative analysts in the sports betting domain

Qualifications:

  • Ph.D. in Mathematics, Statistics, Physics, Computer Science, or a related quantitative field
  • Comprehensive knowledge of NFL and/or NBA, including team statistics, player performance metrics, and league-specific betting trends
  • 10+ years of experience in quantitative analysis, with a strong focus on sports modeling and sports betting
  • Proven track record of developing and implementing high-impact sports simulation models for pricing and risk management
  • Extensive experience with odds compilation and pricing strategies across various sports and bet types
  • Strong programming skills and experience with version control systems (e.g., Git)
  • Deep understanding of the sports betting market, including different bet types, market dynamics, and regulatory environment

Preferred:

  • Experience working with a major sportsbook or Quantitative sports company
  • Familiarity with regulatory requirements and compliance in the sports betting industry
  • Publications or patents related to sports modeling, quantitative modeling, or machine learning in betting contexts
  • Experience with real-time decision-making systems for live betting scenarios
  • Knowledge of esports and emerging betting markets

What’s in it for you?

We offer our employees more than just competitive compensation. Our team benefits include:

· Competitive pay and benefits

  • Flexible vacation allowance
  • Flexible work from home or office hours
  • Startup culture backed by a secure, global brand

Roster of Uniques

We care deeply about every interaction our customers have with us and trust and empower our staff to own and drive their experience. Our vision for our business and customers is built on fostering a diverse and inclusive work environment where regardless of background or beliefs you feel able to be authentic and bring all your talent into play. We want to celebrate you being you (we are an equal opportunities employer)

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for AI Jobs (With Real GitHub Examples)

In the fast-evolving world of artificial intelligence (AI), an impressive portfolio of projects can act as your passport to landing a sought-after role. Even if you’ve aced interviews in the past, employers in AI and machine learning (ML) are increasingly asking candidates to demonstrate hands-on experience through the projects they’ve built and shared online. This is because practical ability often speaks volumes about your suitability for a role—far more than any exam or certification alone could. In this article, we’ll explore how to build an outstanding AI portfolio that catches the eye of recruiters and hiring managers, including: Why an AI portfolio is crucial for job seekers. How to choose AI projects that align with your target roles. Specific project ideas and real GitHub examples to help you stand out. Best practices for showcasing your work, from writing clear READMEs to using Jupyter notebooks effectively. Tips on structuring your GitHub so that employers can instantly see your value. Moreover, we’ll discuss how you can use your portfolio to connect with top employers in AI, with a handy link to our CV-upload page on Artificial Intelligence Jobs for when you’re ready to apply. By the end, you’ll have a clear roadmap to building a portfolio that will help secure interviews—and the AI job—of your dreams.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.