Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Principal Machine Learning Engineer, Structural Biology | Pharma/BioTech | Series A - Drug discovery B2B Platform | Fully Remote, EU | £ 850-1200pd, Outside IR35 | 6-12 months Contract Length

Owen Thomas | Pending B Corp
Leeds
4 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist - Ad Campaign Performance

Technology Risk Senior Manager

Principal Systems Engineer – C&I

Principal Systems Engineer – C&I

Principal Systems Engineer – C&I

Principal Systems Engineer – C&I

Principal Machine Learning Engineer, Structural Biology | Pharma/BioTech | Series A - Drug discovery B2B Platform | Fully Remote, EU | £ 850-1200pd, Outside IR35 | 6-12 months Contract Length


The Client:

A leading organization in the drug discovery field is currently looking for aPrincipal ML Engineerto spearhead the technical direction for their structural biology models. This hands-on, high-impact role offers the opportunity to advance the application of foundational models to complex structural biology challenges.


The successful candidate will work closely with the leadership team, serving as the technical authority on machine learning modeling, architecture, and experimentation in this domain. While this role does not involve people management, the candidate will be expected to provide mentorship and guidance to engineers and researchers on technical content.


The ideal candidate will have deep expertise in training and deploying transformer-based models for protein structure prediction and related tasks. Additionally, they should have a strong understanding of how these models are applied within drug discovery workflows. A proven track record in setting strategy, solving complex technical problems, and delivering impactful ML systems is essential.


Principal Machine Learning Engineer, Structural Biology | Pharma/BioTech expertise | Series A - Drug discovery B2B Platform | Fully Remote, EU || £ 850 - 1200pd, Outside IR35 | 6 - 12 months Contract Length


  • Define approaches for data preprocessing, selection, and benchmarking for new training tasks involving protein structures, complexes, and multimodal biological datasets.
  • Design and implement extensions to models tailored to specific challenges, such as predicting protein complex interactions and binding affinities, including data processing, benchmarking, and evaluation pipelines.
  • Provide mentorship and guidance to team members, assisting with the planning and execution of complex projects related to structural biology modeling.
  • Lead the technical strategy for machine learning applications in structural biology, focusing on adapting and expanding foundational models such as those for protein folding and related tasks.
  • Influence key decisions regarding model architecture, data infrastructure, and model deployment strategies.
  • Work collaboratively with other teams to ensure models address practical needs in scientific discovery.
  • Contribute to scientific publications or open-source projects where applicable.
  • Develop and maintain scalable, production-ready machine learning systems, including pipelines for training, inference, and deployment.


Expected Milestones

  • By month 3: Take charge of a structural biology modeling project. Create a strategy and experiment plan for adapting foundational models to a key high-value application.
  • By month 6: Deliver the initial functional model extension (e.g., binding affinity prediction head), complete with a clear benchmarking framework and a replicable pipeline.
  • By month 12: Oversee multiple ML initiatives in structural biology, showcasing significant improvements in model accuracy and practical impact. Provide mentorship to peers and set the strategic direction for the area.nd practical impact. Provide mentorship to peers and set the strategic direction for the area.


Principal Machine Learning Engineer, Structural Biology | Pharma/BioTech expertise | Series A - Drug discovery B2B Platform | Fully Remote, EU || Fully Remote, EU | £ 850 - 1200pd, Outside IR35 | 6 - 12 months Contract Length


  • You hold a PhD (or equivalent experience) in machine learning, computational biology, or structural biology, with a proven track record of applying machine learning to real-world protein structure or drug discovery challenges.
  • You have extensive experience in building and training transformer-based models (e.g., protein folding models) using frameworks like PyTorch, PyTorch Lightning, or similar.
  • You understand the data challenges in structural biology and are capable of designing scalable preprocessing, training, and evaluation workflows.
  • You have experience delivering machine learning systems at scale, including CI/CD pipelines, model versioning, and distributed GPU-based training.
  • You are proficient with modern MLOps tools and infrastructure, such as Docker, Kubernetes, cloud platforms, and orchestration tools.
  • You are adept at navigating complex technical environments and can deconstruct and execute ambitious modeling initiatives.
  • You understand how structural biology models contribute to the drug discovery process and can align your work with real-world applications.


If you think you are a good match for the Principal Machine Learning Engineer, ADMET | Pharma/BioTech expertise, ping us over your CV and we will give you a call if we think you are a good match!

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Best Free Tools & Platforms to Practise AI Skills in 2025/26

Artificial Intelligence (AI) is one of the fastest-growing career fields in the UK and worldwide. Whether you are a student exploring AI for the first time, a graduate looking to build your portfolio, or an experienced professional upskilling for career growth, having access to free tools and platforms to practise AI skills can make a huge difference. In this comprehensive guide, we’ll explore the best free resources available in 2025, covering AI coding platforms, datasets, cloud tools, no-code AI platforms, online communities, and learning hubs. These tools allow you to practise everything from machine learning models and natural language processing (NLP) to computer vision, reinforcement learning, and large language model (LLM) fine-tuning—without needing a huge budget. By the end of this article, you’ll have a clear roadmap of where to start practising your AI skills for free, how to build real-world projects, and which platforms can help you land your next AI job.

Top 10 Skills in Artificial Intelligence According to LinkedIn & Indeed Job Postings

Artificial intelligence is no longer a niche field reserved for research labs or tech giants—it has become a cornerstone of business strategy across the UK. From finance and healthcare to manufacturing and retail, employers are rapidly expanding their AI teams and competing for talent. But here’s the challenge: AI is evolving so quickly that the skills in demand today may look different from those of just a few years ago. Whether you’re a graduate looking to enter the industry, a mid-career professional pivoting into AI, or an experienced engineer wanting to stay ahead, it’s essential to know what employers are actually asking for in their job ads. That’s where platforms like LinkedIn and Indeed provide valuable insight. By analysing thousands of job postings across the UK, they reveal the most frequently requested skills and emerging trends. This article distils those findings into the Top 10 AI skills employers are prioritising in 2025—and shows you how to present them effectively on your CV, in interviews, and in your portfolio.

Translucent Careers: Senior Artificial Intelligence Engineer in London

The global landscape of artificial intelligence is evolving rapidly, and nowhere is this transformation felt more strongly than in the financial and accounting industries. AI is no longer just a supporting technology; it is becoming the backbone of innovation, efficiency, and decision-making. One of the most exciting companies at the forefront of this movement is Translucent, a dynamic business redefining how accounting professionals work with AI-driven tools. For professionals seeking to combine technical excellence with meaningful industry impact, Translucent represents a rare career destination. At the heart of their current expansion is an opening for a Senior Artificial Intelligence Engineer in London. This role combines high-level technical leadership, hands-on development, and an opportunity to influence the direction of an emerging force in AI. In this article, we’ll explore: Who Translucent are and why they matter. The significance of AI in financial technology (fintech) and accounting. A deep dive into the Senior AI Engineer role. Skills and requirements needed for success. Career growth and opportunities at Translucent. How artificialintelligencejobs.co.uk helps professionals connect with transformative employers like Translucent.