Principal Machine Learning Engineer

Wayve
London
4 months ago
Applications closed

Related Jobs

View all jobs

Principal Application Software Engineer - Degree, Node.js

Principle Technologist - Chiswick 2 days - 118k

Senior Go Engineer

Senior Software Engineer (GO/PHP)

Principle Engineer

Senior Data Scientist (MLOps)

At Wayve we're committed to creating a diverse, fair and respectful culture that is inclusive of everyone based on their unique skills and perspectives, and regardless of sex, race, religion or belief, ethnic or national origin, disability, age, citizenship, marital, domestic or civil partnership status, sexual orientation, gender identity, veteran status, pregnancy or related condition (including breastfeeding) or any other basis as protected by applicable law.

About us

Founded in 2017, Wayve is the leading developer of Embodied AI technology. Our advanced AI software and foundation models enable vehicles to perceive, understand, and navigate any complex environment, enhancing the usability and safety of automated driving systems.

Our vision is to create autonomy that propels the world forward. Our intelligent, mapless, and hardware-agnostic AI products are designed for automakers, accelerating the transition from assisted to automated driving.

At Wayve, big problems ignite us—we embrace uncertainty, leaning into complex challenges to unlock groundbreaking solutions. We aim high and stay humble in our pursuit of excellence, constantly learning and evolving as we pave the way for a smarter, safer future.

At Wayve, your contributions matter. We value diversity, embrace new perspectives, and foster an inclusive work environment; we back each other to deliver impact.

Make Wayve the experience that defines your career!

 The Role

We're looking for leaders who can foster innovation, drive strategic initiatives, and steer teams towards achieving breakthroughs in data centric AI.

This role will sit in our Embodied AI division which consists of modelling, robotics, data and detectives teams working together to deliver an Autonomous Driving product.

We are looking for an experienced Machine Learning Engineer to help us in our journey to scale end-to-end neural networks for autonomous driving. You’ll be working across our embodied AI org team to build, integrate, test and scale algorithms, tools, and machine learning solutions for autonomous driving.

Challenges you will own

Technical leadership of at least one company wide program Developing and implementing machine learning models and robotics systems to enhance the capabilities of our Autonomous Vehicle stack. Collaborating with cross-functional teams to contribute to the broader company strategy and roadmap, focusing on machine learning applications. Enhancing skills and knowledge in machine learning through continuous learning and application, while contributing to the growth and mentorship of junior engineers. Allocating personal bandwidth and technical resources effectively to meet both project requirements and personal professional development needs. Working with leadership and other teams to foster a culture that promotes collaboration, high impact, innovation, and a healthy work environment. Evaluating project decisions and outcomes, identifying dependencies, and analysing risks associated with machine learning deployments. Troubleshooting and optimising machine learning models and systems - identify potential issues, challenge existing assumptions, introduce innovative solutions, and implement feedback loops to enhance model performance.

About you

Essential

7+ years of software and machine learning engineering experience in an industrial or applied research environment Good insight into the practical aspects of training, validation, testing and metrics for deep learning features/models Passion to work in a team on research ideas that have real product impact A good grasp of machine learning literature, ideally published Comfortable working with large quantities of image and video data BSc above in Machine Learning, Computer Science, Engineering, or a related technical discipline or equivalent experience


Desirable

Strong software engineering experience in Python and other relevant languages (e.g. C++ and CUDA) Direct experience working in at least one of computer vision, robotics, simulation, graphics, or large language models. MS, or above in Machine Learning, Computer Science, Engineering, or a related technical discipline or equivalent experience

This is a full-time role based in our office in London. At Wayve we want the best of all worlds so we operate a hybrid working policy that combines time together in our offices and workshops to fuel innovation, culture, relationships and learning, and time spent working from home. We operate core working hours so you can determine the schedule that works best for you and your team. #LAF1

#LI-AF1

We understand that everyone has a unique set of skills and experiences and that not everyone will meet all of the requirements listed above. If you’re passionate about self-driving cars and think you have what it takes to make a positive impact on the world, we encourage you to apply.

For more information visit Careers at Wayve. 

To learn more about what drives us, visit Values at Wayve 

DISCLAIMER: We will not ask about marriage or pregnancy, care responsibilities or disabilities in any of our job adverts or interviews. However, we do look to capture information about care responsibilities, and disabilities among other diversity information as part of an optional DEI Monitoring form to help us identify areas of improvement in our hiring process and ensure that the process is inclusive and non-discriminatory.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 Ways AI Pros Stay Inspired: Boost Creativity with Side Projects, Hackathons & More

In the rapidly evolving world of Artificial Intelligence (AI), creativity and innovation are critical. AI professionals—whether data scientists, machine learning engineers, or research scientists—must constantly rejuvenate their thinking to solve complex challenges. But how exactly do these experts stay energised and creative in their work? The answer often lies in a combination of strategic habits, side projects, hackathons, Kaggle competitions, reading the latest research, and consciously stepping out of comfort zones. This article will explore why these activities are so valuable, as well as provide actionable tips for anyone looking to spark new ideas and enrich their AI career. Below, we’ll delve into tried-and-tested strategies that AI pros employ to drive innovation, foster creativity, and maintain an inspired outlook in an industry that can be both exhilarating and daunting. Whether you’re just starting your AI journey or you’re an experienced professional aiming to sharpen your skills, these insights will help you break out of ruts, discover fresh perspectives, and bring your boldest ideas to life.

Top 10 AI Career Myths Debunked: Key Facts for Aspiring Professionals

Artificial Intelligence (AI) is one of the most dynamic and rapidly growing sectors in technology today. The lure of AI-related roles continues to draw a diverse range of job seekers—from seasoned software engineers to recent graduates in fields such as mathematics, physics, or data science. Yet, despite AI’s growing prominence and accessibility, there remains a dizzying array of myths surrounding careers in this field. From ideas about requiring near-superhuman technical prowess to assumptions that machines themselves will replace these jobs, the stories we hear sometimes do more harm than good. In reality, the AI job market offers far more opportunities than the alarmist headlines and misconceptions might suggest. Here at ArtificialIntelligenceJobs.co.uk, we witness firsthand the myriad roles, backgrounds, and success stories that drive the industry forward. In this blog post, we aim to separate fact from fiction—taking the most pervasive myths about AI careers and debunking them with clear, evidence-based insights. Whether you are an established professional considering a career pivot into data science, or a student uncertain about whether AI is the right path, this article will help you gain a realistic perspective on what AI careers entail. Let’s uncover the truth behind the most common myths and discover the actual opportunities and realities you can expect in this vibrant sector.

Global vs. Local: Comparing the UK AI Job Market to International Landscapes

How to navigate salaries, opportunities, and work culture in AI across the UK, the US, Europe, and Asia Artificial Intelligence (AI) has evolved from a niche field of research to an integral component of modern industries—powering everything from chatbots and driverless cars to sophisticated data analytics in finance and healthcare. The job market for AI professionals is consequently booming, with thousands of new positions posted each month worldwide. In this blog post, we will explore how the UK’s AI job market compares to that of the United States, Europe, and Asia, delving into differences in job demand, salaries, and workplace culture. Additionally, we will provide insights for candidates considering remote or international opportunities. Whether you are a freshly qualified graduate in data science, an experienced machine learning engineer, or a professional from a parallel domain looking to transition into AI, understanding the global vs. local landscape can help you make an informed decision about your career trajectory. As the demand for artificial intelligence skills grows—and borders become more porous with hybrid and remote work—the possibilities for ambitious job-seekers are expanding exponentially. This article will offer a comprehensive look at the various regional markets, exploring how the UK fares in comparison to other major AI hubs. We’ll also suggest factors to consider when choosing where in the world to work, whether physically or remotely. By the end, you’ll have a clearer picture of the AI employment landscape, and you’ll be better prepared to carve out your own path.