Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Postdoctoral Transition Fellow (Senior Research Associate)

University of Cambridge
Cambridge
1 year ago
Applications closed

Related Jobs

View all jobs

Faculty Fellowship Programme Data Science (January 2026)

Faculty Fellowship Programme Data Science (January 2026)

Faculty Fellowship Programme Data Science (January 2026)

Postdoctoral Researcher – Artificial Intelligence for Climate Science

Postdoctoral Data Scientist Engineer for the Quantitative Neuroradiology Initiative

Postdoctoral Research Associate in Transdiagnostic Artificial Intelligence

We are seeking to recruit a highly motivated Postdoctoral Transition Fellow in Machine Learning and Cancer to join Professor Richard Gilbertson's group at the Cancer Research UK Cambridge Institute as part of the Cancer Research UK Children's Brain Tumour Centre (CRUK CBTCE).

The CRUK CBTCE launched in 2018 and is hosted by the University of Cambridge and The Institute of Cancer Research, London. Brain tumours remain the most common cause of cancer-related death in children. Limited progress in these diseases relates directly to the use of inaccurate preclinical pipelines that fail to identify drugs with activity in patients. The CRUK CBTCE convenes a critical mass of expert personnel, infrastructure and global collaborations in paediatric brain tumour biology, medicinal chemistry, pharmacology, together with expertise in preclinical and clinical trials. Our research strategy is centred around our innovative pipeline that aims to generate curative treatments for children with brain tumours. The CRUK CBTCE has received an additional 5 years of funding from CRUK and is currently expanding capacity, building on the success of our previous 6 years programme.

We are recruiting a Postdoctoral Transition Fellow to develop an independent research project using artificial intelligence and machine learning to create the world's first entirely digital models of the hardest to treat children's brain tumours. The models will be used to help identify new treatment targets, develop potential new drugs and test them via virtual clinical trials within computer models of cancer. The role will focus on the development of state-of-the-art machine learning approaches for the analysis of spatial sequencing data of childhood cancers including medulloblastoma and ependymoma in collaboration with the Alan Turing Institute, London and MD Anderson Cancer Center, Texas USA.

Fixed-term: The funds for this post are available for 2 years in the first instance.

Once an offer of employment has been accepted, the successful candidate will be required to undergo a basic disclosure (criminal records check) check and a security check.

We are anticipating a multiple round interview process with the first round to be held early December 2024 and in person interviews to be held in January 2025.

The University actively supports equality, diversity and inclusion and encourages applications from all sections of society.

The University has a responsibility to ensure that all employees are eligible to live and work in the UK.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.