Postdoc in Bayesian machine learning, AstraZeneca, Cambridge, UK

The International Society for Bayesian Analysis
Cambridge
1 week ago
Applications closed

Related Jobs

View all jobs

Remote Postdoc Researcher - AI & Data Science Challenges

Director of Oncology Genomics & Data Science

Machine Learning Research Engineer – NLP / LLM

Machine Learning Research Engineer – NLP / LLM

Machine Learning Research Engineer - NLP / LLM - RedTech Recruitment

Machine Learning Research Engineer - NLP / LLM

Postdoc in Bayesian machine learning, AstraZeneca, Cambridge, UK

Mar 29, 2018

PREDICTING DRUG TOXICITY WITH BAYESIAN MACHINE LEARNING MODELS

We’re currently looking for talented scientists to join our innovative academic-style Postdoc. From our centre in Cambridge, UK you’ll be in a global pharmaceutical environment, contributing to live projects right from the start. You’ll take part in a comprehensive training programme, including a focus on drug discovery and development, given access to our existing Postdoctoral research, and encouraged to pursue your own independent research. It’s a newly expanding programme spanning a range of therapeutic areas across a wide range of disciplines. What’s more, you’ll have the support of a leading academic advisor, who’ll provide you with the guidance and knowledge you need to develop your career.

You will be part of the Quantitative Biology group and develop comprehensive Bayesian machine learning models for predicting drug toxicity in liver, heart, and other organs. This includes predicting the mechanism as well as the probability of toxicity by incorporating scientific knowledge into the prediction problem, such as known causal relationships and known toxicity mechanisms. Bayesian models will be used to account for uncertainty in the inputs and propagate this uncertainty into the predictions. In addition, you will promote the use of Bayesian methods across safety pharmacology and biology more generally. You are also expected to present your findings at key conferences and in leading publications

This project is in collaboration with Prof. Andrew Gelman at Columbia University, and Dr Stanley Lazic at AstraZeneca.

Education and Experience Required:

– PhD in Statistics, Computer Science, Data Science, or similar
– Excellent knowledge of either R or Python (ideally both)

– Knowledge of Bayesian statistics
– Knowledge of modern Bayesian software such as Stan and PyMC3
– Knowledge of (or an interest in) life sciences

This is a 3 year programme. 2 years will be a Fixed Term Contract, with a 1 year extension which will be merit based. The role will be based at Cambridge, UK with a competitive salary on offer.

To apply for this position, please follow the link below:
https://job-search.astrazeneca.com/job/cambridge/post-doc-fellow-bayesian-machine-learning/7684/7417160


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.