PM with Digital Banking Operations and AI

Marylebone High Street
1 month ago
Applications closed

Related Jobs

View all jobs

Operations Director

Project Manager with Digital Banking Operations and Artificial Intelligence AI

We are seeking a Project Manager with Digital Banking Operations and Artificial Intelligence (AI) Projects experience to join our Client a bank based in Central London.

As an AI project manager, you be responsible for overseeing and managing the implementation of AI projects within our digital banking operations.

Experience and Qualifications

  • Previous experience in project management, preferably within the banking or financial services industry

  • Strong understanding of digital banking operations and Artificial Intelligence AI technologies

  • Proven track record of successfully delivering complex projects on time and within budget

  • Project management certification (e.g., PMP) is a plus

  • Bachelor's degree in a relevant field

    Areas to Consider

  1. Customer Service Enhancement

  • Chatbots and Virtual Assistants: Deploy AI-driven chatbots to handle routine inquiries, provide 24/7 support, and reduce wait times.

  • Sentiment Analysis: Use AI to analyze customer feedback and sentiment from various channels to improve services.

  1. Fraud Detection and Prevention

  • Real-Time Monitoring: Implement AI algorithms to detect and flag unusual transactions in real-time.

  • Predictive Analytics: Use machine learning models to predict potential fraud based on historical data and behavioural patterns.

  1. Loan Processing Automation

  • Credit Scoring: AI can evaluate creditworthiness more accurately by analyzing a wider range of data points.

  • Document Verification: Automate the verification of documents submitted for loan applications, speeding up the approval process.

  1. Personalized Banking Services

  • Customer Insights: Leverage AI to gain insights into customer behaviour and preferences, allowing for personalized product recommendations.

  • Marketing Campaigns: Use AI to target customers with tailored marketing campaigns based on their transaction history and preferences.

  1. Risk Management

  • Risk Assessment: AI can analyze market trends and economic indicators to provide early warnings about potential risks.

  • Compliance Monitoring: Automate compliance checks and monitoring to ensure adherence to regulations and reduce the risk of non-compliance penalties.

  1. Operational Efficiency

  • Process Automation: Use robotic process automation (RPA) to handle repetitive tasks such as data entry, account reconciliation, and report generation.

  • Workflow Optimization: AI can optimize workflows by identifying bottlenecks and suggesting improvements.

    Implementation Strategy

  1. Assessment: Evaluate the current state of digital banking operations and identify areas where AI can add value.

  2. Pilot Projects: Start with pilot projects to test AI applications in a controlled environment.

  3. Scalability: Ensure that AI solutions are scalable and can handle increasing volumes of data and transactions.

  4. Employee Training: Train staff on AI tools and their applications to ensure seamless integration.

  5. Continuous Improvement: Regularly update AI models and algorithms based on new data and evolving business needs.

    Challenges and Considerations

  • Data Quality: Ensure high-quality data for accurate AI predictions and analysis.

  • Regulatory Compliance: Stay compliant with financial regulations while implementing AI solutions.

  • Customer Trust: Maintain transparency in AI-driven decisions to build and maintain customer trust.

  • Integration: Seamlessly integrate AI with existing banking systems and processes.

    The main emphasis of this position to is harness the data from a variety of data tables at the bank and collate a Data Lake from which to extract a variety of AI reports to increase the banks customer strategy.

    By strategically implementing AI in these areas, a Digital Banking Operations Manager can greatly improve the efficiency, security, and customer satisfaction in digital banking operations.

    The position will be hybrid 3 days a week in the office.

    The salary is negotiable depending on experience but probably in the range £80K - £120K plus benefits.

    Do send your CV to us in Word format along with your salary and notice period

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Non‑Technical Professionals: Where Do You Fit In?

Your Seat at the AI Table Artificial Intelligence (AI) has left the lab and entered boardrooms, high‑street banks, hospitals and marketing agencies across the United Kingdom. Yet a stubborn myth lingers: “AI careers are only for coders and PhDs.” If you can’t write TensorFlow, surely you have no place in the conversation—right? Wrong. According to PwC’s UK AI Jobs Barometer 2024, vacancies mentioning AI rose 61 % year‑on‑year, but only 35 % of those adverts required advanced programming skills (pwc.co.uk). The Department for Culture, Media & Sport (DCMS) likewise reports that Britain’s fastest‑growing AI employers are “actively recruiting non‑technical talent to scale responsibly” (gov.uk). Put simply, the nation needs communicators, strategists, ethicists, marketers and project leaders every bit as urgently as it needs machine‑learning engineers. This 2,500‑word guide shows where you fit in—and how to land an AI role without touching a line of Python.

ElevenLabs AI Jobs in 2025: Your Complete UK Guide to Crafting Human‑Level Voice Technology

"Make any voice sound infinitely human." That tagline catapulted ElevenLabs from hack‑day prototype to unicorn‑status voice‑AI platform in under three years. The London‑ and New York‑based start‑up’s text‑to‑speech, dubbing and voice‑cloning APIs now serve publishers, film studios, ed‑tech giants and accessibility apps across 45 languages. After an $80 m Series B round in January 2024—which pushed valuation above $1 bn—ElevenLabs is scaling fast, doubling revenue every quarter and hiring aggressively. If you’re an ML engineer who dreams in spectrograms, an audio‑DSP wizard or a product storyteller who can translate jargon into creative workflows, this guide explains how to land an ElevenLabs AI job in 2025.

AI vs. Data Science vs. Machine Learning Jobs: Which Path Should You Choose?

In recent years, the fields of Artificial Intelligence (AI), Data Science, and Machine Learning (ML) have experienced explosive growth. Spurred by the increase in data availability, advances in computing power, and the demand for intelligent decision-making, organisations of all sizes are investing heavily in these areas. If you’ve been exploring AI jobs on www.artificialintelligencejobs.co.uk, you’ve likely noticed that employers use terms like “AI,” “Data Science,” and “Machine Learning”—often interchangeably. While they are closely related, there are nuanced differences between these fields. Understanding these distinctions is key if you’re trying to decide which path suits you best. This comprehensive guide will help you differentiate among AI, Data Science, and Machine Learning. We will discuss the key skills for each, typical job roles, salary ranges, and provide real-world examples of professionals working in these fields. By the end, you should have a clearer idea of where your strengths and passions might fit, helping you take the next step towards securing your ideal role in the world of data-driven innovation.