National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

PhD Studentship: IMPACT-RISE: Infrastructural Surrogate Modelling Using Physics-informed and Interpretable Machine Learning for Community Resiliency and Sustainability Evaluation

University of Exeter
Exeter
8 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Approaches in Bayesian and Ensemble Data Assimilation

PhD Data Scientist

PHD Machine Learning Engineer

Machine Learning Engineer (PhD)

Machine Learning Engineer (PhD)

Data Science Actuary (PHD Graduates)

Location: Department of Computer Science, Streatham Campus, Exeter, The Department of Computer Science at the University of Exeter is currently accepting applications for a fully funded PhD studentship, with a negotiable enrolment date open until January 2026 or earlier. For eligible students the studentship will cover Home or International tuition fees plus an annual tax-free stipend of at least £18,622 for 4 years full-time, or pro rata for part-time study. Project Description The IMPACT-RISE project is a pioneering initiative that seeks to revolutionize the field of community resiliency and sustainability analysis through a machine learning (ML) and explainable artificial intelligence (XAI) outlook. The project marks a significant advancement in improving public safety against both low-probability high-impact events and high-probability events with long-term impacts. It focuses on the development of state-of-the-art infrastructural surrogate models using physics-informed and interpretable ML techniques. Our aim is to comprehensively analyse and mitigate the risks posed by diverse extreme events, both natural and anthropogenic (including earthquakes, floods, storms, climate change), on built environment. The primary goal is to enhance our understanding and predictive capabilities, thereby improving decision-making processes to effectively reduce the impact of these hazards on infrastructure systems. Central to IMPACT-RISE project is the development of data-driven deep learning (DL) based surrogate models that simulate the complex behaviours of infrastructure systems under conditions posed by various hazards (occurring independently and concurrently). These models will be trained while appropriately infusing physics (such as structural dynamics), ensuring not only high accuracy but also enhanced interpretability – a crucial factor for decision-makers in risk management and emergency response. To further boost the interpretability of the DL based surrogate models, principles of explainable artificial intelligence (XAI) will be integrated for a deeper understanding of the models' decision-making processes. Working on the project involves the meticulous collection, development, and analysis of diverse infrastructural and hazard related data sets, ranging from historical incident records to real-time infrastructural sensor data, community maps, and more. Furthermore, the project requires augmentation of real recorded data with simulation data obtained through structural finite-element modelling and analyses. IMPACT-RISE project aims to provide accurate, reliable, and accessible models, thereby playing a pivotal role in fortifying community resilience and sustainability against various hazards. These innovative tools will be instrumental in pinpointing vulnerabilities, optimizing resource distribution, and crafting effective emergency response plans. IMPACT-RISE is grounded in collaborative effort, bringing together a diverse team of specialists in machine learning, civil engineering, and risk analysis. We are committed to align our models with the practical realities and unique challenges of different communities. Through this integrated and cooperative approach, IMPACT-RISE is set to establish new standards in community protection and infrastructure resilience, confronting the diverse challenges of the 21st century with advanced technological solutions and strategic insights. The project is open-ended and offers flexibility, inviting applicants to suggest their unique ideas that align with the overarching theme and objectives of the initiative. Annual tax-free stipend of at least £18,622

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs UK 2025: 50 Companies Hiring Now

Bookmark this guide – we refresh it every quarter so you always know who’s really scaling their artificial‑intelligence teams. Artificial intelligence hiring has roared back in 2025. The UK’s boosted National AI Strategy funding, record‑breaking private investment (£18.1 billion so far) & a fresh wave of generative‑AI product launches mean employers are jockeying for data scientists, ML engineers, MLOps specialists, AI product managers, prompt engineers & applied researchers. Below are 50 organisations that have advertised UK‑based AI vacancies in the past eight weeks or formally announced growth plans. They’re grouped into five easy‑scan categories so you can jump straight to the kind of employer – & culture – that suits you. For each company you’ll find: Main UK hub Example live or recent vacancy Why it’s worth a look (tech stack, culture, mission) Use the internal links to browse current vacancies on ArtificialIntelligenceJobs.co.uk – or set up a free job alert so fresh roles land in your inbox.

Return-to-Work Pathways: Relaunch Your AI Career with Returnships, Flexible & Hybrid Roles

Stepping back into the workplace after a career break can feel like embarking on a whole new journey—especially in a cutting-edge field such as artificial intelligence (AI). For parents and carers, the challenge isn’t just refreshing your technical know-how but also securing a role that respects your family commitments. Fortunately, the UK’s tech sector now boasts a wealth of return-to-work programmes—from formal returnships to flexible and hybrid opportunities. These pathways are designed to bridge the gap, equipping you with refreshed skills, confidence and a supportive network. In this comprehensive guide, you’ll discover how to: Understand the booming demand for AI talent in the UK Leverage transferable skills honed during your break Overcome common re-entry challenges Build your AI skillset with targeted training Tap into returnship and re-entry programmes Find flexible, hybrid and full-time AI roles that suit your lifestyle Balance professional growth with caring responsibilities Master applications, interviews and networking Whether you’re returning after maternity leave, eldercare duties or another life chapter, this article will equip you with practical steps, resources and insider tips.

LinkedIn Profile Checklist for AI Jobs: 10 Tweaks That Triple Recruiter Views

In today’s fiercely competitive AI job market, simply having a LinkedIn profile isn’t enough. Recruiters and hiring managers routinely scout for top talent in machine learning, data science, natural language processing, computer vision and beyond—sometimes before roles are even posted. With hundreds of applicants vying for each role, you need a profile that’s optimised for search, speaks directly to AI-specific skills, and showcases measurable impact. By following this step-by-step LinkedIn for AI jobs checklist, you’ll make ten strategic tweaks that can triple recruiter views and position you as a leading AI professional. Whether you’re a fresh graduate aiming for your first AI position or a seasoned expert targeting a senior role, these actionable changes will ensure your profile stands out in feeds, search results and recruiter queues. Let’s dive in.