Operations Analyst - Sport and Football enthusiast essential

Huntress
Leeds
11 months ago
Applications closed

Related Jobs

View all jobs

Principal Data Scientist

Principal Data Scientist

Data Scientist - Water Sector

Lead Data Scientist

Data Scientist - Water Sector

Senior Simulation Engineer (Data Science)

A leading Leeds-based tech organisation is looking for a passionateFootball and Data Enthusiastto join their team as anOperations Analyst. If you're a football fan with a love for data, this is the perfect opportunity to turn your passion into a career!

Key Responsibilities:

  • Manage and analyse large volumes of data to ensure accuracy and functionality across various systems.
  • Monitor systems to ensure data is behaving as it should. If data isn't performing correctly, investigate and resolve the issue.
  • Map data, ensuring it's organised and flows correctly across different systems.
  • Constantly look for ways to improve data processes and identify areas for improvement.
  • Work with spreadsheets, ensuring data is well-managed and accurate.
  • Collaborate with your team to ensure smooth and efficient operations.
  • No direct customer contact, but a vital part of the team ensuring everything runs efficiently behind the scenes.

Shifts & Schedule:

  • 5 shifts a week, including weekends.
  • 3 shifts: 9am - 5pm.
  • 2 late-night shifts per month: until 10pm.
  • Weekend shifts will start at 7am, 9am, or 1pm for 8-hour shifts.

Ideal Candidate:

  • Data Science Graduateor someone with...

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.