Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Natural Language Processing (NLP) Specialist (The Language Architect)

Unreal Gigs
London
11 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

NLP / LLM Scientist - Applied AI ML Lead - Machine Learning Centre of Excellence

NLP / Machine Learning Data Scientist

Data scientist / ML engineer

Senior Machine Learning Engineer – Computer Vision

Senior Data Scientist

Are you fascinated by the potential of language and how it can be transformed into intelligent systems? Do you love working with cutting-edge Natural Language Processing (NLP) techniques to help machines understand and generate human language? If you're passionate about building NLP solutions that solve real-world problems, thenour clienthas an exciting opportunity for you. We’re looking for aNatural Language Processing (NLP) Specialist(aka The Language Architect) to design and develop sophisticated language models and applications that drive innovation and transform how businesses interact with text and speech data.

As an NLP Specialist atour client, you’ll work closely with AI researchers, data scientists, and software engineers to design and deploy NLP systems that power a range of applications, from chatbots and voice assistants to sentiment analysis and text mining. Your expertise will play a critical role in making human-machine communication seamless, intuitive, and effective.

Key Responsibilities:

  1. Develop NLP Models and Algorithms:
  • Design and implement state-of-the-art NLP models, such as transformers, BERT, GPT, and other neural network architectures, to solve language-based problems. You’ll work on tasks like sentiment analysis, text generation, named entity recognition, and machine translation.
Build NLP-Powered Applications:
  • Develop NLP applications that enable chatbots, voice assistants, and other AI-driven tools to understand and generate natural language. You’ll help create intuitive user experiences by making these systems more conversational and context-aware.
Data Preprocessing and Text Mining:
  • Perform data preprocessing and feature extraction on large text datasets to prepare them for NLP tasks. You’ll clean, tokenize, and transform text data, ensuring that it’s optimized for language models and machine learning algorithms.
Experiment with Cutting-Edge NLP Techniques:
  • Stay up-to-date with the latest advancements in NLP research, including developments in deep learning and transfer learning. You’ll experiment with new algorithms and approaches to improve the performance of NLP models and push the boundaries of what's possible.
Deploy Models into Production:
  • Work with engineering and DevOps teams to deploy NLP models into production environments, ensuring they are scalable, efficient, and reliable. You’ll use cloud platforms and AI services to implement and monitor models in real-world applications.
Collaborate with Cross-Functional Teams:
  • Partner with data scientists, product managers, and engineers to integrate NLP models into products and services. You’ll help translate business objectives into NLP solutions that drive user engagement and improve business outcomes.
Monitor and Fine-Tune Model Performance:
  • Continuously monitor the performance of deployed models, fine-tuning them as needed to ensure they deliver accurate and relevant results. You’ll retrain models using new data and feedback to keep them up-to-date and robust.

Requirements

Required Skills:

  • NLP Expertise:Strong experience in natural language processing techniques, including sentiment analysis, named entity recognition, text classification, and machine translation. You’re familiar with neural network models like transformers, RNNs, and CNNs.
  • Machine Learning and Deep Learning:Proficiency in machine learning and deep learning frameworks like TensorFlow, PyTorch, or Hugging Face. You know how to apply these frameworks to build, train, and fine-tune NLP models.
  • Programming and Data Skills:Proficiency in Python and experience working with NLP libraries such as NLTK, SpaCy, or Stanford NLP. You’re skilled at manipulating large text datasets and preparing them for analysis and model training.
  • Model Deployment and Optimization:Experience deploying NLP models into production environments using cloud platforms (AWS, GCP, Azure) and containerization tools like Docker. You know how to optimize models for scalability and performance.
  • Collaboration and Communication:Strong collaboration skills, with the ability to work with cross-functional teams and communicate complex technical concepts to non-technical stakeholders.

Educational Requirements:

  • Bachelor’s or Master’s degree in Computer Science, Data Science, AI, Linguistics, or a related field.Equivalent experience in NLP or machine learning is highly valued.
  • Certifications or additional coursework in NLP, AI, or deep learning are a plus.

Experience Requirements:

  • 3+ years of experience in NLP or machine learning,with hands-on experience building and deploying NLP models in real-world applications.
  • Proven track record of working with large text datasets, developing language models, and delivering NLP-driven solutions that solve business problems.
  • Experience with cloud-based NLP services (AWS Comprehend, Google Cloud NLP, Azure Cognitive Services) is highly desirable.

Benefits

  • Health and Wellness: Comprehensive medical, dental, and vision insurance plans with low co-pays and premiums.
  • Paid Time Off: Competitive vacation, sick leave, and 20 paid holidays per year.
  • Work-Life Balance: Flexible work schedules and telecommuting options.
  • Professional Development: Opportunities for training, certification reimbursement, and career advancement programs.
  • Wellness Programs: Access to wellness programs, including gym memberships, health screenings, and mental health resources.
  • Life and Disability Insurance: Life insurance and short-term/long-term disability coverage.
  • Employee Assistance Program (EAP): Confidential counseling and support services for personal and professional challenges.
  • Tuition Reimbursement: Financial assistance for continuing education and professional development.
  • Community Engagement: Opportunities to participate in community service and volunteer activities.
  • Recognition Programs: Employee recognition programs to celebrate achievements and milestones.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.

AI Team Structures Explained: Who Does What in a Modern AI Department

Artificial Intelligence (AI) and Machine Learning (ML) are no longer confined to research labs and tech giants. In the UK, organisations from healthcare and finance to retail and logistics are adopting AI to solve problems, automate processes, and create new products. With this growth comes the need for well-structured teams. But what does an AI department actually look like? Who does what? And how do all the moving parts come together to deliver business value? In this guide, we’ll explain modern AI team structures, break down the responsibilities of each role, explore how teams differ in startups versus enterprises, and highlight what UK employers are looking for. Whether you’re an applicant or an employer, this article will help you understand the anatomy of a successful AI department.