MTS Software Development Eng.

Advanced Micro Devices
Cambridge
1 month ago
Applications closed

WHAT YOU DO AT AMD CHANGES EVERYTHING

We care deeply about transforming lives with AMD technology to enrich our industry, our communities, and the world. Our mission is to build great products that accelerate next-generation computing experiences – the building blocks for the data center, artificial intelligence, PCs, gaming and embedded. Underpinning our mission is the AMD culture. We push the limits of innovation to solve the world’s most important challenges. We strive for execution excellence while being direct, humble, collaborative, and inclusive of diverse perspectives.

Sr. SOFTWARE DEVELOPMENT ENGINEER

THE ROLE:

AI Software development engineer on teams building and optimizing Deep Learning applications and AI frameworks for AMD GPU compute platforms. Work as part of an AMD development team and open-source community to analyze, develop, test and deploy improvements to make AMD the best platform for machine learning applications.

THE PERSON:

Strong technical and analytical skills in C++ development in a Linux environment. Ability to work as part of a team, while also being able to work independently, define goals and scope and lead your own development effort.

KEY RESPONSIBILITIES:

  • Optimize Deep Learning Frameworks:Enhance and optimize frameworks like TensorFlow and PyTorch for AMD GPUs in open-source repositories.
  • Develop GPU Kernels:Create and optimize GPU kernels to maximize performance for specific AI operations.
  • Develop & Optimize Models:Design and optimize deep learning models specifically for AMD GPU performance.
  • Collaborate with GPU Library Teams:Work closely with internal teams to analyze and improve training and inference performance on AMD GPUs.
  • Collaborate with Open-Source Maintainers:Engage with framework maintainers to ensure code changes are aligned with requirements and integrated upstream.
  • Work in Distributed Computing Environments:Optimize deep learning performance on both scale-up (multi-GPU) and scale-out (multi-node) systems.
  • Utilize Cutting-Edge Compiler Tech:Leverage advanced compiler technologies to improve deep learning performance. Optimize Deep Learning Pipeline: Enhance the full pipeline, including integrating graph compilers.
  • Software Engineering Best Practices:Apply sound engineering principles to ensure robust, maintainable solutions.

PREFERRED EXPERIENCE:

  • GPU Kernel Development & Optimization:Proficient experienced in designing and optimizing GPU kernels for deep learning on AMD GPUs using HIP, CUDA, and assembly (ASM). Strong knowledge of AMD architectures (GCN, RDNA) and low-level programming to maximize performance for AI operations, leveraging tools like Compute Kernel (CK), CUTLASS, and Triton for multi-GPU and multi-platform performance.
  • Deep Learning Integration:Proficient experienced in integrating optimized GPU performance into machine learning frameworks (e.g., TensorFlow, PyTorch) to accelerate model training and inference, with a focus on scaling and throughput.
  • Software Engineering:Proficient skills in Python and C++, with experience in debugging, performance tuning, and test design to ensure high-quality, maintainable software solutions.
  • High-Performance Computing:Proficient experience in running large-scale workloads on heterogeneous compute clusters, optimizing for efficiency and scalability.
  • Compiler Optimization:Solid understanding of compiler theory and tools like LLVM and ROCm for kernel and system performance optimization.

ACADEMIC CREDENTIALS:

  • Bachelor's and/or Master’s degree in Computer Science, Computer Engineering, Electrical Engineering, or a related field.
  • 3 + years of professional experience in technical software development, with a focus on GPU optimization, performance engineering, and/or framework development.

Benefits offered are described:AMD benefits at a glance.

AMD does not accept unsolicited resumes from headhunters, recruitment agencies, or fee-based recruitment services. AMD and its subsidiaries are equal opportunity, inclusive employers and will consider all applicants without regard to age, ancestry, color, marital status, medical condition, mental or physical disability, national origin, race, religion, political and/or third-party affiliation, sex, pregnancy, sexual orientation, gender identity, military or veteran status, or any other characteristic protected by law. We encourage applications from all qualified candidates and will accommodate applicants’ needs under the respective laws throughout all stages of the recruitment and selection process.

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for AI Jobs (With Real GitHub Examples)

In the fast-evolving world of artificial intelligence (AI), an impressive portfolio of projects can act as your passport to landing a sought-after role. Even if you’ve aced interviews in the past, employers in AI and machine learning (ML) are increasingly asking candidates to demonstrate hands-on experience through the projects they’ve built and shared online. This is because practical ability often speaks volumes about your suitability for a role—far more than any exam or certification alone could. In this article, we’ll explore how to build an outstanding AI portfolio that catches the eye of recruiters and hiring managers, including: Why an AI portfolio is crucial for job seekers. How to choose AI projects that align with your target roles. Specific project ideas and real GitHub examples to help you stand out. Best practices for showcasing your work, from writing clear READMEs to using Jupyter notebooks effectively. Tips on structuring your GitHub so that employers can instantly see your value. Moreover, we’ll discuss how you can use your portfolio to connect with top employers in AI, with a handy link to our CV-upload page on Artificial Intelligence Jobs for when you’re ready to apply. By the end, you’ll have a clear roadmap to building a portfolio that will help secure interviews—and the AI job—of your dreams.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.