Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

ML Research Engineer

Rain AI
London
10 months ago
Applications closed

Related Jobs

View all jobs

Senior ML Research Engineer - Artificial Intelligence in London

Machine Learning Engineer, Controllable GAIA

Machine Learning Engineer (Research)

Machine Learning Engineer (Research)

Research Engineer, ML, AI & Computer Vision

Research Engineer - Machine Learning

About the role:

The job opening is part of a research project funded by theARIAprogram: “Scaling Compute” by bringing the cost of AI hardware down by >1000x. The project is aboutEquilibrium Propagation(EP), an alternative training framework to backpropagation (BP) that is compatible with analog computing hardware (i.e. fast and energy-efficient hardware). Specifically, the project is aimed at demonstrating through simulations that EP can be a viable alternative to BP to solve modern ML tasks on analog computing platforms.


In this position, you will help develop a software framework for EP in PyTorch. This framework, which will support both hardware and software simulations, will enable scaling of EP to large networks and datasets, enabling the core experiments of the research project.


Responsibilities:

  • Developing a software framework for the simulations of EP (in PyTorch), building upon the one available atthis link
  • Developing unit tests and establishing a working pipeline for us to safely contribute to the framework as we scale it
  • Making the framework parallelizable on multiple GPUs (parallelization across mini-batches of data, parallelization over the computation of different equilibrium states of EP, etc.)
  • Developing tools to store experimental results in an organized way, analyze and visualize the data/results, and schedule experiments in advance (to make optimal use of our GPUs)
  • Conducting ML research related to the software framework, including benchmarking EP against equivalent-size networks trained with backpropagation
  • Integrating new models and use cases in the framework (e.g.meta-learningandenergy transformers), as well as new algorithms from the literature on “bilevel optimization
  • Possibility to collaborate (both internally and externally), write research articles and present them in conferences


Qualifications:

  • MS or PhD in Computer Science, Machine Learning, or similar field or equivalent education and experience
  • Experience building and distributing software libraries (including developing code with unit tests and collaborating on Github)
  • Experience with deep learning frameworks such as PyTorch, Jax or Tensorflow
  • Experience with implementing and training large models (e.g. ResNets, diffusion models, and transformers) on GPU clusters
  • Experience in distributed computing


Preferred Qualifications:

  • Understanding of deep learning models such as ResNets, diffusion models, and transformers
  • Familiarity withBilevel Optimization
  • Familiarity withEquilibrium Propagation(EP)
  • Familiarity withModern Hopfield Networks
  • Familiarity withMeta-Learning
  • Familiarity with hardware, data and environmental constraints associated with analog computing systems
  • A top-tier publication record in Machine Learning conferences and journals

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.