Mid/Senior Quant

BettingJobs
Greater London
10 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Machine Learning Engineer (Mid-Senior, Remote)

Machine Learning Engineer (Mid-Senior, Remote)

Machine Learning Engineer (Mid-Senior, Remote) - Renude

Machine Learning Engineer (Mid-Senior, Remote) - Renude

Senior Data Scientist — Healthcare Analytics & Growth

BettingJobsis partnering with a renowned sports analytics company that serves clients in the iGaming industry in their search for a talented Quantitative Analyst to join their London based team.


The successful candidate will use the extensive datasets to enhance existing predictive models, research new methods, and turn your insights into production-ready solutions. This research will involve a mix of well-executed analyses and innovative modelling to solve unique challenges in football analytics, where traditional methods often need to be adapted or reinvented. To achieve this, you will have the freedom to explore and develop your own ideas while working collaboratively with a team of quants, developers, and analysts, to combine technical expertise with football knowledge.


Key Requirements:


  • 3+ years of experience applying predictive modelling, machine learning, and probability theory, preferably in sports or gaming/betting industries
  • Familiarity with techniques such as Monte Carlo simulation, Bayesian modelling, mixed effects models, Kalman filters, GLMs, and time series forecasting. While expertise in every area isn’t expected, you should have a broad awareness of available techniques and tools, and understand the trade-offs of different approaches
  • Strong Programming skills, ideally in Python
  • Knowledge of SQL and relational databases
  • Experience in exploring new datasets, identifying data quality issues, and handling imperfect data effectively


An excellent candidate will also:


  • Understand and apply expected value and utility principles, both in evaluating betting scenarios and in prioritising projects or analyses
  • Have a practical approach to problem-solving, balancing attention to detail with the ability to deliver MVPs quickly
  • Be able to deliver projects independently, making informed and justifiable decisions, while also contributing effectively as part of a team
  • Be able to communicate complex models and analyses clearly to both technical and non-technical audiences
  • Have an interest in football and sports analytics

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.