Mid/Senior Data Scientist

Two
London
8 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist — Healthcare Analytics & Growth

Data Scientist: Azure‑Native Analytics & Automation

Senior Data Scientist

Senior Data Scientist - Generative AI

Senior Data Science Manager

Data Scientist

Are you passionate about data-driven innovation, building best-in-class data products, and delivering impactful business insights? Do you have strong technical expertise in Python, SQL, and experience in analysing and modeling data? Are you eager to work in a fast-paced, cross-functional team within an early-stage startup, where you can take ownership and actively shape our data strategy? If so, we would love to hear from you!

At Two, we are revolutionising B2B payments by bringing the best of B2C e-commerce to the B2B world. Our innovative, data-driven solutions empower businesses to sell more, faster, and more efficiently, creating a seamless commerce experience. With an impressive 30% month-on-month growth rate, our ambition is to become the world’s largest B2B payment solution by 2027.

Backed by leading VCs such as Sequoia, Shine, LocalGlobe, Antler, and Posten, along with influential Fintech angel investors, we’ve raised over €30 million to date. Now, we’re expanding our team to continue reshaping the future of B2B payments. 🚀

About the role:

We are looking for a Mid or Senior-Level Data Scientist to join our high-performing team, united by a passion for data excellence. This is an exciting opportunity to work in a dynamic, fast-paced environment, where data science plays a crucial role in risk management, fraud detection, customer behavior analytics, and automation of financial processes.

In this role, you will apply machine learning, advanced statistical techniques, and large-scale data processing to develop models that enhance our BNPL platform. You will work closely with Engineering, Risk, and Product teams to deploy scalable, data-driven solutions that fuel business growth.

Key Responsibilities:

  • Develop and deploy machine learning models to optimise credit risk assessment, fraud detection, and transaction automation.
  • Analyse large datasets to extract meaningful insights and drive data-informed decision-making.
  • Enhance our data pipelines and machine learning infrastructure, ensuring efficient model training and deployment.
  • Collaborate with engineering, product, and risk teams to integrate data science solutions into real-time production environments.
  • Conduct statistical analyses and A/B testing to validate hypotheses and improve model performance.
  • Continuously research and experiment with emerging techniques in machine learning, deep learning, and data analytics.

Requirements

  • 3-5 years of experience in data science, machine learning, or a related field.
  • Strong programming skills in Python and SQL, with the ability to query databases and manipulate large datasets.
  • Proficiency in key Python libraries for data science, including Pandas, Scikit-learn, Statsmodels, NumPy, SciPy, Matplotlib, TensorFlow, and Keras.
  • Solid understanding of machine learning techniques, such as clustering, tree-based methods, boosting, text mining, and neural networks.
  • Expertise in statistical modeling and techniques such as regression, hypothesis testing, simulation, resampling methods, and stratification.
  • Degree in Data Science, Mathematics, Physics, Computer Science, Engineering, or another quantitative field (or equivalent experience).
  • Strong business acumen with a problem-solving mindset, ideally with experience in fintech or payments.
  • Excellent communication skills, with the ability to convey complex technical concepts to both technical and non-technical stakeholders.
  • Ability to work in a dynamic, fast-paced environment, adapting to changing priorities and objectives.


Benefits

  • 25 days paid time off per year + public holidays 🌴
  • £500 annual allowance to spend on anything that will contribute to your mental or physical health 🤸
  • £500 allowance towards a phone device every 24 months (from your 6th month anniversary) 📱
  • £500 annual allowance for learning and training 📚
  • Cycle to work scheme 🚲
  • Enjoy a flexible work environment, balancing onsite and working from home 🏡

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.