Macro Futures Quant Researcher (London)

Anson McCade
London
1 year ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Research Fellow (Computer Vision)

Responsibilities:

  • Develop systematic trading models across fixed income, currency and commodity (FICC) markets
  • Manage the research pipeline end-to-end, including signal idea generation, data processing, modeling, strategy backtesting, and production implementation
  • Perform feature engineering with price-volume, order book, and alternative data for intraday to daily horizons in mid frequency trading space
  • Perform feature combination and monetization using various modeling techniques
  • Assist in building, maintenance, and continual improvement of production and trading environments coupled with execution monitoring.
  • Contribute to the research infrastructure of the team.

 

Requirements:

  • Background in mathematics, statistics, machine learning, computer science, engineering, quantitative finance, or economics
  • 2-5 years of experience in macro quantitative trading, preferably FICC
  • Experience synthesizing predictive signals for both cross-sectional and time-series models driven by
  • statistical/technical, fundamental, and data driven signals
  • Ability to efficiently format and manipulate large, raw data sources
  • Strong experience with data exploration, dimension reduction, and feature engineering
  • Demonstrated proficiency in Python. Familiarly with data science toolkits, such as scikit-learn, Pandas. Experience with machine learning is a plus
  • Strong command of foundations of applied and theoretical statistics, linear algebra, and machine learning techniques
  • Collaborative mindset with strong independent research abilities
  • Commitment to the highest ethical standards

 

We regret to inform that only shortlisted candidates will be notified.

 

EA license number: 24S2098 (Anson McCade Pte. Ltd.)

Reg No.: R1544685 (Won Seng Lee)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.