National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Software Engineer, Research

PhysicsX Ltd
London
1 month ago
Applications closed

Related Jobs

View all jobs

Machine Learning Research Engineer - NLP / LLM Expert

AI Software Engineer

Senior Software Engineer – API & ML Infrastructure

Computer Vision Engineer

Machine Learning Operations Engineer

Lead Machine Learning Engineer – London, UK

PhysicsX is a deep-tech company of scientists and engineers, developing machine learning applications to massively accelerate physics simulations and enable a new frontier of optimisation opportunities in design and engineering.

Born out of numerical physics and proven in Formula One, we help our customers radically improve their concepts and designs, transform their engineering processes and drive operational product performance. We do this in some of the most advanced and important industries of our time – including Space, Aerospace, Additive Manufacturing, Electric Vehicles, Motorsport, and Renewables. Our work creates positive impact for society, be it by improving the design of artificial hearts, reducing CO2 emissions from aircraft and road vehicles, and increasing the performance of wind turbines.

We are taking the next leap in building out our technology platform and product offering. In this context, we are looking for a capable and enthusiastic machine learning software engineer to join our research team. If all of this sounds exciting to you, we would love to talk.

Note:We are currently recruiting for multiple positions, however please only apply for the role that best aligns with your skillset and career goals.

What you will do

  • Work closely with our research scientists and simulation engineers to build and deliver models that address real-world physics and engineering problems.
  • Design, build and optimise machine learning models with a focus on scalability and efficiency in our application domain.
  • Transform prototype model implementations to robust and optimised implementations.
  • Implement distributed training architectures (e.g., data parallelism, parameter server, etc.) for multi-node/multi-GPU training and explore federated learning capacity using cloud (e.g., AWS, Azure, GCP) and on-premise services.
  • Work with research scientists to design, build and scale foundation models for science and engineering; helping to scale and optimise model training to large data and multi-GPU cloud compute.
  • Identify the best libraries, frameworks and tools for our modelling efforts to set us up for success.
  • Own Research work-streams at different levels, depending on seniority.
  • Discuss the results and implications of your work with colleagues and customers, especially how these results can address real-world problems.
  • Work at the intersection of data science and software engineering to translate the results of our Research into re-usable libraries, tooling and products.
  • Foster a nurturing environment for colleagues with less experience in ML / Engineering for them to grow and you to mentor.

What you bring to the table

  • Enthusiasm about developing machine learning solutions, especially deep learning and/or probabilistic methods, and associated supporting software solutions for science and engineering.
  • Ability to work autonomously and scope and effectively deliver projects across a variety of domains.
  • Strong problem-solving skills and the ability to analyse issues, identify causes, and recommend solutions quickly.
  • Excellent collaboration and communication skills — with teams and customers alike.

Minimum Requirements

MSc or PhD in computer science, machine learning, applied statistics, mathematics, physics, engineering, software engineering, or a related field, with a record of experience in any of the following:

  • Scientific computing;
  • High-performance computing (CPU / GPU clusters);
  • Parallelised / distributed training for large / foundation models.

Ideally >1 years of experience in a data-driven role, with exposure to:

  • scaling and optimising ML models, training and serving foundation models at scale (federated learning a bonus);
  • distributed computing frameworks (e.g., Spark, Dask) and high-performance computing frameworks (MPI, OpenMP, CUDA, Triton);
  • cloud computing (on hyper-scaler platforms, e.g., AWS, Azure, GCP);
  • building machine learning models and pipelines in Python, using common libraries and frameworks (e.g., NumPy, SciPy, Pandas, PyTorch, JAX), especially including deep learning applications;
  • C/C++ for computer vision, geometry processing, or scientific computing;
  • software engineering concepts and best practices (e.g., versioning, testing, CI/CD, API design, MLOps);
  • container-ization and orchestration (Docker, Kubernetes, Slurm);
  • writing pipelines and experiment environments, including running experiments in pipelines in a systematic way.

What we offer

  • Be part of something larger: Make an impact and meaningfully shape an early-stage company. Work on some of the most exciting and important topics there are. Do something you can be proud of.
  • Work with a fun group of colleagues that support you, challenge you and help you grow. We come from many different backgrounds, but what we have in common is the desire to operate at the very top of our fields and solve truly challenging problems in science and engineering. If you are similarly capable, caring and driven, you'll find yourself at home here.
  • Experience a truly flat hierarchy. Voicing your ideas is not only welcome but encouraged, especially when they challenge the status quo.
  • Work sustainably, striking the right balance between work and personal life.
  • Receive a competitive compensation and equity package, in addition to plenty of perks such as generous vacation and parental leave, complimentary office food, as well as fun outings and events.
  • Opportunity to collaborate in our lovely Shoreditch office and enjoy a good proportion of time working from home, if desired. Get the opportunity to occasionally visit our customers' engineering sites and experience first-hand how our work is transforming their ways of working.
  • Use first-class equipment for working in-office or remotely, including HPC.

We value diversity and are committed to equal employment opportunity regardless of sex, race, religion, ethnicity, nationality, disability, age, sexual orientation or gender identity. We strongly encourage individuals from groups traditionally underrepresented in tech to apply. To help make a change, we sponsor bright women from disadvantaged backgrounds through their university degrees in science and mathematics.


#J-18808-Ljbffr

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 AI Recruitment Agencies in the UK You Should Know (2025 Job‑Seeker Guide)

Generative‑AI hype has translated into real hiring: Lightcast recorded +57 % year‑on‑year growth in UK adverts mentioning “machine learning”, “LLM” or “gen‑AI” during Q1 2025. Yet supply still lags. Roughly 18,000 core AI professionals work in the UK, but monthly live vacancies hover around 1,400–1,600. That mismatch makes specialist recruiters invaluable—opening stealth vacancies, advising on salary bands and fast‑tracking interview loops. But many tech agencies sprinkle “AI” on their website without an active desk. To save you time, we vetted 50 + consultancies and kept only those with: A registered UK head office (verified via Companies House). A named AI/Machine‑Learning or Data practice.

AI Jobs Skills Radar 2026: Emerging Frameworks, Languages & Tools to Learn Now

As the UK’s AI sector accelerates towards a £1 trillion tech economy, the job landscape is rapidly evolving. Whether you’re an aspiring AI engineer, a machine learning specialist, or a data-driven software developer, staying ahead of the curve means more than just brushing up on Python. You’ll need to master a new generation of frameworks, languages, and tools shaping the future of artificial intelligence. Welcome to the AI Jobs Skills Radar 2026—your definitive guide to the emerging AI tech stack that employers will be looking for in the next 12–24 months. Updated annually for accuracy and relevance, this guide breaks down the top tools, frameworks, platforms, and programming languages powering the UK’s most in-demand AI careers.

How to Find Hidden AI Jobs in the UK Using Professional Bodies like BCS, IET & the Turing Society

Stop Scrolling Job Boards and Start Tapping the Real AI Market Every week a new headline announces millions of pounds flowing into artificial-intelligence research, defence initiatives, or health-tech pilots. Read the news and you could be forgiven for thinking that AI vacancies must be everywhere—just grab your laptop, open LinkedIn, and pick a role. Yet anyone who has hunted seriously for an AI job in the United Kingdom knows the truth is messier. A large percentage of worthwhile AI positions—especially specialist or senior posts—never appear on public boards. They emerge inside university–industry consortia, defence labs, NHS data-science teams, climate-tech start-ups, and venture studios. Most are filled through referral or conversation long before a recruiter drafts a formal advert. If you wait for a vacancy link, you are already at the back of the queue. The surest way to beat that dynamic is to embed yourself in the professional bodies and grassroots communities where the work is conceived. The UK has a dense network of such organisations: the Chartered Institute for IT (BCS); the Institution of Engineering and Technology (IET) with its Artificial Intelligence Technical Network; the Alan Turing Institute and its student-driven Turing Society; the Royal Statistical Society (RSS); the Institution of Mechanical Engineers (IMechE) and its Mechatronics, Informatics & Control Group; public-funding engines like UK Research and Innovation (UKRI); and an ecosystem of Slack channels and Meetup groups that trade genuine, timely intel. This article is a practical, step-by-step guide to using those networks. You will learn: Why professional bodies matter more than algorithmic job boards Exactly which special-interest groups (SIGs) and technical networks to join How to turn CPD events into informal interviews How to monitor grant databases so you hear about posts months before they exist Concrete scripts, portfolio tactics, and outreach rhythms that convert visibility into offers Follow the playbook and you move from passive applicant to insider—the colleague who hears about a role before it is written down.