Machine Learning Scientist II

Expedia Group
London
1 year ago
Applications closed

Related Jobs

View all jobs

Software Engineer III - MLOps

Collections Data Scientist - Swindon, Swindon...

Machine Learning Scientist (Based in Dubai)

Machine Learning Scientist (Based in Dubai)

Machine Learning Scientist

Machine Learning Scientist

Machine Learning Scientist II

This role sits centrally within the organization offering a diverse perspective and a vast array of challenges.

We build end-to-end solutions for optimizing standalone pricing algorithms and contributing substantial value to PLS and our partners.

We embrace test and learn by continuously experimenting, analyzing and improving our algorithms which has helped PLS become the fastest growing business within Expedia Group.

What you’ll do:

  • Applying statistics methods like confidence intervals, point estimates and sample size estimates to make sound and confident inferences on data and A/B tests

  • Building pricing algorithms and configuring the in-house machine learning systems

  • Communicating complex analytical topics in a clean & simple way to multiple partners and senior leadership (both internal & external)

  • Conducting feature engineering and modifying existing models/techniques to suit business needs

  • Modeling rich and complex online travel data to understand, predict and optimize business metrics to help improve the partner experience

  • Framing business problems as data science problems with a concrete set of tasks

  • Collaborate with technology and business divisions as appropriate

  • Articulate solutions, methodologies and frameworks concisely to both technical and non-technical partners

Who you are:

  • Bachelors or Master's degree in a technical, or analytical-related, subject such as Computer Science (with focus in areas like Artificial Intelligence, Machine Learning, Natural Language Processing, Data Mining, Data Science), Mathematics, Physics, Statistics, Operations Research, Electrical and Computer Engineering or equivalent experience.

  • Must have a base knowledge of ML techniques like Regression, Naïve Bayes, Gradient Boosting, Random Forests, SVMs, Neural Networks, and NLP

  • Must have some experience with a programming, statistical, and/or querying languages like Python, R, SQL/Hive, Java

  • Helpful to understand distributed file systems, scalable datastores, distributed computing and related technologies (Spark, Hadoop, etc.); implementation experience of MapReduce techniques, in-memory data processing, etc.

  • Helpful to be familiar with TensorFlow, and cloud computing (AWS specifically, in a distributed computing context)

  • Helpful to be able to effectively communicate and engage with a variety of partners (e.g., internal, external, technical, non-technical people)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.

AI Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we head into 2026, the AI hiring market in the UK is going through one of its biggest shake-ups yet. Economic conditions are still tight, some employers are cutting headcount, & AI itself is automating whole chunks of work. At the same time, demand for strong AI talent is still rising, salaries for in-demand skills remain high, & new roles are emerging around AI safety, governance & automation. Whether you are an AI job seeker planning your next move or a recruiter trying to build teams in a volatile market, understanding the key AI hiring trends for 2026 will help you stay ahead. This guide breaks down the most important trends to watch, what they mean in practice, & how to adapt – with practical actions for both candidates & hiring teams.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.