Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning Ops Engineer

Cloud Bridge
Marlow
5 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer – Insurance

Machine Learning Computer Vision Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Lead Data Scientist - Remote

We are seeking an experienced MLOps Engineer to bridge the gap between machine learning models and production environments. As an MLOps Engineer, you will be responsible for building, deploying, and maintaining scalable machine learning infrastructure in AWS. You will work closely with data scientists, DevOps teams, and software engineers to ensure that machine learning models can be successfully operationalised, monitored, and updated in real-time environments.

Key Responsibilities:

  • Design and deploy scalable machine learning pipelines using AWS services (SageMaker, Lambda, ECS/EKS, DynamoDB) and automate infrastructure with CloudFormation, Terraform, or AWS CDK.
  • Implement robust monitoring for model performance and drift with tools like CloudWatch, SageMaker Model Monitor, ensuring models meet business and compliance requirements.
  • Automate the full machine learning lifecycle, integrating models into CI/CD pipelines (CodePipeline, Jenkins, GitLab CI) for seamless deployment and version control.
  • Collaborate with data scientists and engineers to transition models from development to production, optimizing workflows and resource usage.
  • Manage and optimize data pipelines, ensuring data is available for training, testing, and inference at scale, supporting model performance improvements.
  • Design cloud-native, cost-efficient machine learning solutions that scale based on real-time data and increasing workloads.

Required Skills & Experience:

  • Hands-on experience with AWS services such as SageMaker, Lambda, EKS, EC2, CloudFormation, and DynamoDB for deploying and managing machine learning models.
  • Proficiency in containerization (Docker, Kubernetes) and automating ML pipelines using CI/CD tools like CodePipeline, Jenkins, and GitLab CI.
  • Experience with model versioning tools (MLflow, DVC, SageMaker Model Registry) and automating data workflows to ensure data availability and traceability.
  • Strong background in Python, Bash, and scripting to automate model management, training, and deployment processes.
  • Knowledge of cloud infrastructure security practices, including data privacy, model security, and compliance standards like GDPR and SOC 2.
  • Familiarity with AWS big data tools (Redshift, Glue, EMR) for processing large datasets to support machine learning models.

Preferred Qualifications:

  • AWS Certified Machine Learning – Specialty or other relevant certifications.
  • Experience with machine learning deployment frameworks (TensorFlow Serving, Kubeflow, MLflow) and managing containerized workloads with ECS/EKS.
  • Deep understanding of data privacy regulations, model security, and designing solutions that are compliant with industry standards.
  • Background in machine learning libraries such as TensorFlow, PyTorch, or XGBoost for model development and training.
  • Familiarity with serverless computing for ML workflows using AWS Lambda and API Gateway, and multi-cloud environments.

If you are a skilled MLOps Engineer with a passion for automating machine learning pipelines, deploying models at scale, and optimizing cloud-based infrastructures, we’d love to hear from you!

#CBTR

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why the UK Could Be the World’s Next AI Jobs Hub

Artificial Intelligence (AI) has rapidly moved from research labs into boardrooms, classrooms, hospitals, and homes. It is already reshaping economies and transforming industries at a scale comparable to the industrial revolution or the rise of the internet. Around the world, countries are competing fiercely to lead in AI innovation and reap its economic, social, and strategic benefits. The United Kingdom is uniquely positioned in this race. With a rich heritage in computing, world-class universities, forward-thinking government policy, and a growing ecosystem of startups and enterprises, the UK has many of the elements needed to become the world’s next AI hub. Yet competition is intense, particularly from the United States and China. Success will depend on how effectively the UK can scale its strengths, close its gaps, and seize opportunities in the years ahead. This article explores why the UK could be the world’s next global hub for artificial intelligence, what challenges it must overcome, and what this means for businesses, researchers, and job seekers.

The Best Free Tools & Platforms to Practise AI Skills in 2025/26

Artificial Intelligence (AI) is one of the fastest-growing career fields in the UK and worldwide. Whether you are a student exploring AI for the first time, a graduate looking to build your portfolio, or an experienced professional upskilling for career growth, having access to free tools and platforms to practise AI skills can make a huge difference. In this comprehensive guide, we’ll explore the best free resources available in 2025, covering AI coding platforms, datasets, cloud tools, no-code AI platforms, online communities, and learning hubs. These tools allow you to practise everything from machine learning models and natural language processing (NLP) to computer vision, reinforcement learning, and large language model (LLM) fine-tuning—without needing a huge budget. By the end of this article, you’ll have a clear roadmap of where to start practising your AI skills for free, how to build real-world projects, and which platforms can help you land your next AI job.

Top 10 Skills in Artificial Intelligence According to LinkedIn & Indeed Job Postings

Artificial intelligence is no longer a niche field reserved for research labs or tech giants—it has become a cornerstone of business strategy across the UK. From finance and healthcare to manufacturing and retail, employers are rapidly expanding their AI teams and competing for talent. But here’s the challenge: AI is evolving so quickly that the skills in demand today may look different from those of just a few years ago. Whether you’re a graduate looking to enter the industry, a mid-career professional pivoting into AI, or an experienced engineer wanting to stay ahead, it’s essential to know what employers are actually asking for in their job ads. That’s where platforms like LinkedIn and Indeed provide valuable insight. By analysing thousands of job postings across the UK, they reveal the most frequently requested skills and emerging trends. This article distils those findings into the Top 10 AI skills employers are prioritising in 2025—and shows you how to present them effectively on your CV, in interviews, and in your portfolio.