Machine Learning Manager, London

Bjak
London
7 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineering Manager, Gen AI

Engineering Manager, Machine Learning, Marketplace, Ecommerce, | 35 Million Users | UK Remote OR...

Engineering Manager, Machine Learning, Marketplace, Ecommerce, | 35 Million Users | UK Remote OR...

Engineering Manager, Machine Learning, Marketplace, Ecommerce, | 35 Million Users | UK Remote OR...

Engineering Manager, Machine Learning, Marketplace, Ecommerce, | 35 Million Users | UK Remote OR...

Engineering Manager, Machine Learning, Marketplace, Ecommerce, | 35 Million Users | UK Remote OR...

This job is brought to you by Jobs/Redefined, the UK's leading over-50s age inclusive jobs board.

BJAKis an internet company with deep expertise in automation, having built Southeast Asia's largest insurance aggregator. Leveraging our strength in advanced browser automation, we're now launching a global AI solution designed to simplify life through intelligent task automation.

Based in Malaysia, our AI product is uniquely positioned to serve global markets, and we're at an exciting stage in our journey. Our mission is to ensure that the benefits of AI reach everyone, everywhere, creating a world where intelligent task automation enhances human productivity and makes life easier.

Our team is goal-driven, highly motivated, and focused on delivering exceptional products that delight users. We operate with a flat organizational structure where ownership, initiative, and excellence are key to growth. Leadership opportunities are earned by those who consistently deliver outstanding results and show initiative. At BJAK, there are no limits to growth-if you're inspired by meaningful challenges, hands-on contributions, and rapid career advancement, you'll thrive here.

Join us in building innovations that simplify life and shape the future of AI.

Key Responsibilities:

  • Lead and mentor a team of AI engineers, providing technical guidance, coaching, and fostering their growth.
  • Collaborate with product managers and stakeholders to define AI project objectives, requirements, and timelines.
  • Design, develop, and implement AI models, algorithms, and applications to solve complex business challenges.
  • Oversee the end-to-end AI model lifecycle, including data collection, preprocessing, model training, evaluation, and deployment.
  • Stay updated with the latest advancements in AI and machine learning, incorporating best practices into projects.
  • Drive data-driven decision-making through advanced analytics and visualization techniques.
  • Ensure the security, scalability, and efficiency of AI solutions.
  • Lead research efforts to explore and integrate cutting-edge AI techniques.

Requirements

  • Bachelor's, Master's, or Ph.D. in Computer Science, Artificial Intelligence, or a related field.
  • Proven experience as an AI engineer or data scientist, with a track record of leading successful AI projects.
  • Proficiency in AI and machine learning frameworks and programming languages (e.g., Python).
  • Strong expertise in data preprocessing, feature engineering, and model evaluation.
  • Excellent problem-solving and critical-thinking skills.
  • Effective leadership, communication, and team management abilities.
  • A passion for staying at the forefront of AI and machine learning advancements.

Benefits

  • Fast moving, challenging and unique business problems
  • Attractive remuneration and performance incentives
  • Strong learning and development plans for your career growth
  • Great career development opportunities in a growing company
  • International work environment and flat organization
  • Competitive salary


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.