Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning Infrastructure Engineer [UAE Based]

AI71
London
3 months ago
Applications closed

Related Jobs

View all jobs

data scientist

Machine Learning Engineer

Machine Learning Engineer – Insurance

Machine Learning Computer Vision Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Job Title: ML Infrastructure Senior Engineer

Location: Abu Dhabi, United Arab Emirates [Full relocation package provided]



Job Overview

We are seeking a skilled ML Infrastructure Engineer to join our growing AI/ML platform team. This role is ideal for someone passionate about large-scale machine learning systems and has hands-on experience deploying LLMs/SLMs using advanced inference engines like vLLM. You will play a critical role in designing, deploying, optimizing, and managing ML models and the infrastructure around them—both for inference, fine-tuning and continued pre-training.


Key Responsibilities

· Deploy large-scale or small language models (LLMs/SLMs) using inference engines (e.g., vLLM, Triton, etc.).

· Collaborate with research and data science teams to fine-tune models or build automated fine-tuning pipelines.

· Extend inference-level capabilities by integrating advanced features such as multi-modality, real-time inferencing, model quantization, and tool-calling.

· Evaluate and recommend optimal hardware configurations (GPU, CPU, RAM) based on model size and workload patterns.

· Build, test, and optimize LLMs Inference for consistent model deployment.

· Implement and maintain infrastructure-as-code to manage scalable, secure, and elastic cloud-based ML environments.

· Ensure seamless orchestration of the MLOps lifecycle, including experiment tracking, model registry, deployment automation, and monitoring.

· Manage ML model lifecycle on AWS (preferred) or other cloud platforms.

· Understand LLM architecture fundamentals to design efficient scalability strategies for both inference and fine-tuning processes.


Required Skills


Core Skills:

· Proven experience deploying LLMs or SLMs using inference engines like vLLM, TGI, or similar.

· Experience in fine-tuning language models or creating automated pipelines for model training and evaluation.

· Deep understanding of LLM architecture fundamentals (e.g., attention mechanisms, transformer layers) and how they influence infrastructure scalability and optimization.

· Strong understanding of hardware-resource alignment for ML inference and training.

Technical Proficiency:

· Programming experience in Python and C/C++, especially for inference optimization.

· Solid understanding of the end-to-end MLOps lifecycle and related tools.

· Experience with containerization, image building, and deployment (e.g., Docker, Kubernetes optional).

Cloud & Infrastructure:

· Hands-on experience with AWS services for ML workloads (SageMaker, EC2, EKS, etc.) or equivalent services in Azure/GCP.

· Ability to manage cloud infrastructure to ensure high availability, scalability, and cost efficiency.


Nice-to-Have

· Experience with ML orchestration platforms like MLflow, SageMaker Pipelines, Kubeflow, or similar.

· Familiarity with model quantization, pruning, or other performance optimization techniques.

· Exposure to distributed training frameworks like Unsloth, DeepSpeed, Accelerate, or FSDP.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why the UK Could Be the World’s Next AI Jobs Hub

Artificial Intelligence (AI) has rapidly moved from research labs into boardrooms, classrooms, hospitals, and homes. It is already reshaping economies and transforming industries at a scale comparable to the industrial revolution or the rise of the internet. Around the world, countries are competing fiercely to lead in AI innovation and reap its economic, social, and strategic benefits. The United Kingdom is uniquely positioned in this race. With a rich heritage in computing, world-class universities, forward-thinking government policy, and a growing ecosystem of startups and enterprises, the UK has many of the elements needed to become the world’s next AI hub. Yet competition is intense, particularly from the United States and China. Success will depend on how effectively the UK can scale its strengths, close its gaps, and seize opportunities in the years ahead. This article explores why the UK could be the world’s next global hub for artificial intelligence, what challenges it must overcome, and what this means for businesses, researchers, and job seekers.

The Best Free Tools & Platforms to Practise AI Skills in 2025/26

Artificial Intelligence (AI) is one of the fastest-growing career fields in the UK and worldwide. Whether you are a student exploring AI for the first time, a graduate looking to build your portfolio, or an experienced professional upskilling for career growth, having access to free tools and platforms to practise AI skills can make a huge difference. In this comprehensive guide, we’ll explore the best free resources available in 2025, covering AI coding platforms, datasets, cloud tools, no-code AI platforms, online communities, and learning hubs. These tools allow you to practise everything from machine learning models and natural language processing (NLP) to computer vision, reinforcement learning, and large language model (LLM) fine-tuning—without needing a huge budget. By the end of this article, you’ll have a clear roadmap of where to start practising your AI skills for free, how to build real-world projects, and which platforms can help you land your next AI job.

Top 10 Skills in Artificial Intelligence According to LinkedIn & Indeed Job Postings

Artificial intelligence is no longer a niche field reserved for research labs or tech giants—it has become a cornerstone of business strategy across the UK. From finance and healthcare to manufacturing and retail, employers are rapidly expanding their AI teams and competing for talent. But here’s the challenge: AI is evolving so quickly that the skills in demand today may look different from those of just a few years ago. Whether you’re a graduate looking to enter the industry, a mid-career professional pivoting into AI, or an experienced engineer wanting to stay ahead, it’s essential to know what employers are actually asking for in their job ads. That’s where platforms like LinkedIn and Indeed provide valuable insight. By analysing thousands of job postings across the UK, they reveal the most frequently requested skills and emerging trends. This article distils those findings into the Top 10 AI skills employers are prioritising in 2025—and shows you how to present them effectively on your CV, in interviews, and in your portfolio.