Machine Learning Field Engineer

Skills Alliance
Liverpool
1 year ago
Applications closed

Related Jobs

View all jobs

Machine Learning Research Engineer - NLP / LLM

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer - AI Data Trainer

Machine Learning Engineer - UK

Machine Learning Research Engineer - NLP / LLM

Responsibilities

  • Engage with prospective clientsto grasp their scientific and technical needs, challenges, and goals. Use these insights to design and deliver customized product demos that highlight solution benefits.
  • Translate complex scientific needs—such as requirements in biochemical analysis, molecular modeling, or drug discovery
  • Collaborate with researchers and computational scientiststo help them explore how technology can support key areas like protein folding, molecular simulations, and drug discovery.
  • Serve as a technical resourcefor commercial and pre-sales teams.
  • Lead and oversee proof-of-concept initiativesand pilot projects with potential clients
  • Gather and communicate client feedbackto product and development teams



Qualification

  • MSc or PhD in Computational Biology, Computer Science or related fields, with 2+ years of industry experience
  • Experience incomputational biology tasks, molecular simulations, or analyzingbiochemical data pipelines
  • Used predictive biology tools, focused onprotein structure prediction orADME-tox analysis
  • Client Engagement: Passionate about directly interacting with clients, understanding their challenges, and providing technical support to enhancesales outcomes
  • Programming:Python proficiency is essential, and knowledge of additional languages (e.g.,R, Go, Rust, JavaScript)
  • ML Implementation Experience: Practical skills in deploying ML using a range ofopen-source tool
  • Cloud Platform Variety: Experience withmulti-cloud or on-premise solutions
  • Distributed Systems Knowledge: Skilled in working with or deploying distributed systems

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.

AI Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we head into 2026, the AI hiring market in the UK is going through one of its biggest shake-ups yet. Economic conditions are still tight, some employers are cutting headcount, & AI itself is automating whole chunks of work. At the same time, demand for strong AI talent is still rising, salaries for in-demand skills remain high, & new roles are emerging around AI safety, governance & automation. Whether you are an AI job seeker planning your next move or a recruiter trying to build teams in a volatile market, understanding the key AI hiring trends for 2026 will help you stay ahead. This guide breaks down the most important trends to watch, what they mean in practice, & how to adapt – with practical actions for both candidates & hiring teams.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.