Machine Learning Engineer , WFI Field: Data

Amazon UK Services Ltd. - A10
London
8 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer (NLP)

Senior Machine Learning Engineer

Machine Learning / Computer Vision Engineer – Data Scientist

Lead Machine Learning Engineer

Want to work for a fast-paced, innovative team? Want to work on ground-breaking initiatives? Want to work on problems that have massive scale but also need high precision? We are seeking a strong data science leader for our Workforce Staffing organization.
Workforce Staffing is responsible for hiring hourly associates into our global fulfillment operation. Each year we hire over 1 million associates across the globe. Workforce Intelligence (WFI), a subsidiary of Workforce Staffing (WFS), is responsible for driving decisions that help Workforce Staffing deliver the scale and precision it needs while minimizing the cost of hiring. WFI manages data acquisition, engineering, research, science and products that help WFS make the best decisions. Hiring over 1 million associates around the world presents the largest staffing challenge in a private company environment. The complexity is high and precision is needed because over hiring leads to unnecessary increase in wage and under hiring leads to delayed delivery of products to Amazon’s customers. There are over a dozen levers that WFS can pull to manage the scale and precision of hiring.


Key job responsibilities
As a Machine Learning Engineer, you will work closely with science teams to bring research to production. This is a role that combines engineering knowledge, technical strength, and product focus. It will be your job to implement novel ML systems, product integrations, and performance optimizations. You will guide the direction of a MLOPS automation framework via collaboration with the engineering and research communities.
You will collaborate with software engineering teams to integrate successful experimental results into complex Amazon production systems and you will provide support for business continuity on a rotating on call.


A day in the life
Almost everyday offers new challenges and opportunities for growth. Where one day will offer implementation of Self-Service MLOps tooling, the next day may be focused on our operational excellence in maintaining our code base. Later in the week, you may sort technical challenges with our partners to help them enrich their products with our models. On some days or weeks, you may watch over our products and stand ready to intervene and provide support to partners consuming our models.

About the team
We work back to back to address the technical challenges of automation across a variety of products, software, and systems. Our scientists and machine learning engineers work in synergy to solve hard problems and enrich each other's skills. Together, we are a powerful team of global specialists bringing the potential of practical ML and AI to the max with impact on over a million of candidates applying for a Job in Amazon.

BASIC QUALIFICATIONS

- 3+ years of non-internship professional software development experience
- 3+ years experience and knowledge in MLOps, in deploying, operationalizing, and maintaining scalable AI/ML-solutions in production
- 1+ years of non-internship design or architecture (design patterns, reliability and scaling) of new and existing systems experience
- Experience programming with at least one software programming language
- Bachelor's degree in computer science or equivalent

PREFERRED QUALIFICATIONS

- 2+ years of full software development life cycle, including coding standards, code reviews, source control management, build processes, testing, and operations experience
- Master's degree in computer science or equivalent
- Experience in machine learning, data mining, information retrieval and statistics.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 Ways AI Pros Stay Inspired: Boost Creativity with Side Projects, Hackathons & More

In the rapidly evolving world of Artificial Intelligence (AI), creativity and innovation are critical. AI professionals—whether data scientists, machine learning engineers, or research scientists—must constantly rejuvenate their thinking to solve complex challenges. But how exactly do these experts stay energised and creative in their work? The answer often lies in a combination of strategic habits, side projects, hackathons, Kaggle competitions, reading the latest research, and consciously stepping out of comfort zones. This article will explore why these activities are so valuable, as well as provide actionable tips for anyone looking to spark new ideas and enrich their AI career. Below, we’ll delve into tried-and-tested strategies that AI pros employ to drive innovation, foster creativity, and maintain an inspired outlook in an industry that can be both exhilarating and daunting. Whether you’re just starting your AI journey or you’re an experienced professional aiming to sharpen your skills, these insights will help you break out of ruts, discover fresh perspectives, and bring your boldest ideas to life.

Top 10 AI Career Myths Debunked: Key Facts for Aspiring Professionals

Artificial Intelligence (AI) is one of the most dynamic and rapidly growing sectors in technology today. The lure of AI-related roles continues to draw a diverse range of job seekers—from seasoned software engineers to recent graduates in fields such as mathematics, physics, or data science. Yet, despite AI’s growing prominence and accessibility, there remains a dizzying array of myths surrounding careers in this field. From ideas about requiring near-superhuman technical prowess to assumptions that machines themselves will replace these jobs, the stories we hear sometimes do more harm than good. In reality, the AI job market offers far more opportunities than the alarmist headlines and misconceptions might suggest. Here at ArtificialIntelligenceJobs.co.uk, we witness firsthand the myriad roles, backgrounds, and success stories that drive the industry forward. In this blog post, we aim to separate fact from fiction—taking the most pervasive myths about AI careers and debunking them with clear, evidence-based insights. Whether you are an established professional considering a career pivot into data science, or a student uncertain about whether AI is the right path, this article will help you gain a realistic perspective on what AI careers entail. Let’s uncover the truth behind the most common myths and discover the actual opportunities and realities you can expect in this vibrant sector.

Global vs. Local: Comparing the UK AI Job Market to International Landscapes

How to navigate salaries, opportunities, and work culture in AI across the UK, the US, Europe, and Asia Artificial Intelligence (AI) has evolved from a niche field of research to an integral component of modern industries—powering everything from chatbots and driverless cars to sophisticated data analytics in finance and healthcare. The job market for AI professionals is consequently booming, with thousands of new positions posted each month worldwide. In this blog post, we will explore how the UK’s AI job market compares to that of the United States, Europe, and Asia, delving into differences in job demand, salaries, and workplace culture. Additionally, we will provide insights for candidates considering remote or international opportunities. Whether you are a freshly qualified graduate in data science, an experienced machine learning engineer, or a professional from a parallel domain looking to transition into AI, understanding the global vs. local landscape can help you make an informed decision about your career trajectory. As the demand for artificial intelligence skills grows—and borders become more porous with hybrid and remote work—the possibilities for ambitious job-seekers are expanding exponentially. This article will offer a comprehensive look at the various regional markets, exploring how the UK fares in comparison to other major AI hubs. We’ll also suggest factors to consider when choosing where in the world to work, whether physically or remotely. By the end, you’ll have a clearer picture of the AI employment landscape, and you’ll be better prepared to carve out your own path.