Machine Learning Engineer , WFI Field: Data

Amazon UK Services Ltd. - A10
London
1 year ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Want to work for a fast-paced, innovative team? Want to work on ground-breaking initiatives? Want to work on problems that have massive scale but also need high precision? We are seeking a strong data science leader for our Workforce Staffing organization.
Workforce Staffing is responsible for hiring hourly associates into our global fulfillment operation. Each year we hire over 1 million associates across the globe. Workforce Intelligence (WFI), a subsidiary of Workforce Staffing (WFS), is responsible for driving decisions that help Workforce Staffing deliver the scale and precision it needs while minimizing the cost of hiring. WFI manages data acquisition, engineering, research, science and products that help WFS make the best decisions. Hiring over 1 million associates around the world presents the largest staffing challenge in a private company environment. The complexity is high and precision is needed because over hiring leads to unnecessary increase in wage and under hiring leads to delayed delivery of products to Amazon’s customers. There are over a dozen levers that WFS can pull to manage the scale and precision of hiring.


Key job responsibilities
As a Machine Learning Engineer, you will work closely with science teams to bring research to production. This is a role that combines engineering knowledge, technical strength, and product focus. It will be your job to implement novel ML systems, product integrations, and performance optimizations. You will guide the direction of a MLOPS automation framework via collaboration with the engineering and research communities.
You will collaborate with software engineering teams to integrate successful experimental results into complex Amazon production systems and you will provide support for business continuity on a rotating on call.


A day in the life
Almost everyday offers new challenges and opportunities for growth. Where one day will offer implementation of Self-Service MLOps tooling, the next day may be focused on our operational excellence in maintaining our code base. Later in the week, you may sort technical challenges with our partners to help them enrich their products with our models. On some days or weeks, you may watch over our products and stand ready to intervene and provide support to partners consuming our models.

About the team
We work back to back to address the technical challenges of automation across a variety of products, software, and systems. Our scientists and machine learning engineers work in synergy to solve hard problems and enrich each other's skills. Together, we are a powerful team of global specialists bringing the potential of practical ML and AI to the max with impact on over a million of candidates applying for a Job in Amazon.

BASIC QUALIFICATIONS

- 3+ years of non-internship professional software development experience
- 3+ years experience and knowledge in MLOps, in deploying, operationalizing, and maintaining scalable AI/ML-solutions in production
- 1+ years of non-internship design or architecture (design patterns, reliability and scaling) of new and existing systems experience
- Experience programming with at least one software programming language
- Bachelor's degree in computer science or equivalent

PREFERRED QUALIFICATIONS

- 2+ years of full software development life cycle, including coding standards, code reviews, source control management, build processes, testing, and operations experience
- Master's degree in computer science or equivalent
- Experience in machine learning, data mining, information retrieval and statistics.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.