National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Engineer (Visa Sponsorship Available)

Techwaka
Edinburgh
2 weeks ago
Create job alert

£60k per annum

As aMachine Learning Engineer, you will be part of an MLOps team, working alongside data scientists, software engineers, and other stakeholders to bring machine learning models to life. You will be responsible for deploying, maintaining, and monitoring models in production, improving model performance, and refining the machine learning infrastructure to support business objectives. Your role will also involve optimizing workflows, integrating CI/CD pipelines, and ensuring the scalability and reliability of AI-driven solutions.

Key Responsibilities:

  • Model Deployment: Collaborate with data scientists to deploy machine learning models, ensuring quality and scalability.
  • Pipeline Development: Build and maintain model pipelines to integrate with existing systems and workflows.
  • CI/CD for ML: Design and implement continuous integration and delivery pipelines for efficient model deployment.
  • Model Monitoring: Monitor machine learning models in production, ensuring ongoing performance and reliability.
  • Collaboration: Work with cross-functional teams to design solutions that align with business objectives and best practices in machine learning.
  • Optimization: Continuously improve machine learning infrastructure and production workflows.
  • Strong technical foundation in machine learning and software engineering
  • Proficiency in Python and ML libraries (e.g., TensorFlow, PyTorch, scikit-learn)
  • Experience with cloud platforms (AWS, GCP, Azure)
  • Experience with CI/CD pipelines for machine learning (e.g., Vertex AI)
  • Familiarity with data processing tools like Apache Beam/Dataflow
  • Strong understanding of monitoring and maintaining models in production environments
  • Experience with containerization tools (e.g., Docker)
  • Problem-solving skills with the ability to troubleshoot model and pipeline issues
  • Strong communication skills for cross-team collaboration

Requirements

  • Bachelor's degree in Computer Science, Data Science, or a related field
  • 3+ years of experience in deploying and maintaining machine learning models
  • Experience with cloud platforms, model pipelines, and CI/CD processes
  • Strong coding skills in Python

Benefits

  • Flexible Working Options: Including hybrid and remote options
  • Competitive Compensation Package + Bonus
  • 25 Days Holiday Per Year(increasing to 28 after 2 years)
  • 2 Paid Volunteering Days Per Yearfor giving back to causes you care about
  • Learning & Development Opportunities: Access to industry training through learning platforms
  • Pension & Life Insurance
  • Health Cash Plan & Online GPservices
  • Paid Parental Leave
  • Season Ticket Loan & Cycle-to-Work Scheme
  • Discounted Gym Membership
  • Central Office Locationwith complimentary snacks and refreshments
  • Relocation Assistance & Work Visa Sponsorshipfor international talent
  • Employee Assistance Programme (EAP)
  • Company Events: Regular social events, team-building activities, and access to over 4,000 deals and discounts on travel, electronics, fashion, and more.


#J-18808-Ljbffr

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better AI Job After a Lay-Off or Redundancy

Being made redundant or laid off can feel like the rug has been pulled from under you. Whether part of a wider company restructuring, budget cuts, or market shifts in tech, many skilled professionals in the AI industry have recently found themselves unexpectedly jobless. But while redundancy brings immediate financial and emotional stress, it can also be a powerful catalyst for career growth. In the fast-evolving field of artificial intelligence, where new roles and specialisms emerge constantly, bouncing back stronger is not only possible—it’s likely. In this guide, we’ll walk you through a step-by-step action plan for turning redundancy into your next big opportunity. From managing the shock to targeting better AI jobs, updating your CV, and approaching recruiters the smart way, we’ll help you move from setback to comeback.

AI Jobs Salary Calculator 2025: Work Out Your Market Value in Seconds

Why your 2024 salary data is already outdated “Am I being paid what I’m worth?” It is the question that creeps in whenever you update your CV, see a former colleague announce a punchy pay rise on LinkedIn, or notice a recruiter slide into your inbox with a role that looks eerily similar to your current one—only advertised at £20k more. Artificial intelligence moves faster than any other hiring market. New frameworks are open‑sourced overnight, venture capital floods specific niches without warning, & entire job titles—Prompt Engineer, LLM Ops Specialist—appear in the time it takes most industries to schedule a meeting. In that environment, salary guides published only a year ago already look like historical curiosities. To give AI professionals an up‑to‑the‑minute benchmark, ArtificialIntelligenceJobs.co.uk has built a simple yet powerful salary‑calculation formula. By combining three variables—role, UK region, & seniority—you can estimate a realistic 2025 salary band in less than a minute. This article explains that formula, unpacks the latest trends driving pay, & offers concrete steps to boost your personal market value over the next 90 days.

How to Present AI Models to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

In today’s competitive job market, AI professionals are expected to do more than just build brilliant algorithms—they must also explain them clearly to stakeholders who may have no technical background. Whether you're applying for a role as a machine learning engineer, data scientist, or AI consultant, your ability to articulate complex models in simple terms is fast becoming one of the most valued soft skills in interviews and on the job. This guide will help you master the art of public speaking for AI roles, offering tips on structuring presentations, designing effective slides, and using storytelling to make your work resonate with any audience.