Machine Learning Engineer (The Model Innovator)

Unreal Gigs
Cambridge
4 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer( Real time Data Science Applications)

Machine Learning Manager

Machine Learning Engineer

Machine Learning Engineer

Are you passionate about solving complex problems with cutting-edge machine learning techniques? Do you love transforming raw data into intelligent systems that can make predictions, automate processes, and provide deep insights? If you're excited about building scalable, high-performance machine learning models that drive business innovation, thenour clienthas the perfect opportunity for you. We’re looking for aMachine Learning Engineer(aka The Model Innovator) to develop, deploy, and optimize machine learning models that transform how we leverage data for decision-making.

As a Machine Learning Engineer atour client, you will work alongside data scientists, software engineers, and product managers to build machine learning solutions that power intelligent applications and services. You’ll be responsible for creating scalable algorithms, refining model performance, and ensuring that our AI systems deliver high-quality results in real-world environments.

Key Responsibilities:

  1. Design and Develop Machine Learning Models:
  • Build and deploy machine learning models using algorithms such as regression, classification, clustering, and deep learning. You’ll work with large datasets to train models that solve real-world problems like prediction, recommendation, and automation.
Model Training and Hyperparameter Tuning:
  • Experiment with different model architectures and optimize hyperparameters to improve model accuracy and efficiency. You’ll apply cross-validation, regularization, and other techniques to ensure high-performing models.
Data Processing and Feature Engineering:
  • Collaborate with data engineers and scientists to preprocess, clean, and transform large datasets into formats that are suitable for machine learning. You’ll perform feature engineering to extract meaningful features that enhance model performance.
Deploy Models into Production:
  • Implement machine learning models in production environments, ensuring that they are scalable, reliable, and efficient. You’ll work with cloud platforms and DevOps teams to deploy models using technologies like Docker, Kubernetes, and CI/CD pipelines.
Monitor and Improve Model Performance:
  • Continuously monitor model performance in production, detecting issues such as model drift or degradation. You’ll retrain and optimize models as needed, ensuring that they remain accurate and relevant over time.
Collaborate with Cross-Functional Teams:
  • Work closely with software developers, product managers, and data scientists to integrate machine learning models into products and services. You’ll ensure that AI solutions meet business objectives and deliver measurable value.
Stay Current with AI and Machine Learning Trends:
  • Keep up-to-date with the latest developments in machine learning, deep learning, and AI. You’ll explore new algorithms, tools, and techniques to continuously improve the machine learning solutions you develop.

Requirements

Required Skills:

  • Machine Learning Expertise:Strong knowledge of machine learning algorithms, including supervised and unsupervised learning techniques. You’re experienced with tools like TensorFlow, PyTorch, Scikit-learn, and Keras for building and deploying models.
  • Programming and Software Development:Proficiency in programming languages such as Python, R, or Scala, with experience writing production-level code. You can build, test, and deploy machine learning solutions efficiently.
  • Data Engineering and Feature Engineering:Hands-on experience with data preprocessing, feature selection, and engineering. You understand how to handle large datasets and optimize them for machine learning workflows.
  • Model Deployment and DevOps:Experience deploying machine learning models into production using cloud platforms (AWS, GCP, Azure) and containerization tools like Docker. You know how to implement models that scale efficiently.
  • Collaboration and Communication:Excellent collaboration skills, with the ability to work closely with cross-functional teams to translate business requirements into machine learning solutions. You can explain technical concepts clearly to non-technical stakeholders.

Educational Requirements:

  • Bachelor’s or Master’s degree in Computer Science, Data Science, AI, or a related field.Equivalent experience in machine learning engineering is highly valued.
  • Certifications or additional coursework in machine learning, AI, or data science are a plus.

Experience Requirements:

  • 3+ years of experience in machine learning engineering,with hands-on experience building and deploying machine learning models in production environments.
  • Proven track record of working with large datasets, designing machine learning pipelines, and delivering AI-driven solutions that solve business problems.
  • Experience working with cloud-based AI services (AWS SageMaker, Google AI Platform, Azure ML) is highly desirable.

Benefits

  • Health and Wellness: Comprehensive medical, dental, and vision insurance plans with low co-pays and premiums.
  • Paid Time Off: Competitive vacation, sick leave, and 20 paid holidays per year.
  • Work-Life Balance: Flexible work schedules and telecommuting options.
  • Professional Development: Opportunities for training, certification reimbursement, and career advancement programs.
  • Wellness Programs: Access to wellness programs, including gym memberships, health screenings, and mental health resources.
  • Life and Disability Insurance: Life insurance and short-term/long-term disability coverage.
  • Employee Assistance Program (EAP): Confidential counseling and support services for personal and professional challenges.
  • Tuition Reimbursement: Financial assistance for continuing education and professional development.
  • Community Engagement: Opportunities to participate in community service and volunteer activities.
  • Recognition Programs: Employee recognition programs to celebrate achievements and milestones.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for AI Jobs (With Real GitHub Examples)

In the fast-evolving world of artificial intelligence (AI), an impressive portfolio of projects can act as your passport to landing a sought-after role. Even if you’ve aced interviews in the past, employers in AI and machine learning (ML) are increasingly asking candidates to demonstrate hands-on experience through the projects they’ve built and shared online. This is because practical ability often speaks volumes about your suitability for a role—far more than any exam or certification alone could. In this article, we’ll explore how to build an outstanding AI portfolio that catches the eye of recruiters and hiring managers, including: Why an AI portfolio is crucial for job seekers. How to choose AI projects that align with your target roles. Specific project ideas and real GitHub examples to help you stand out. Best practices for showcasing your work, from writing clear READMEs to using Jupyter notebooks effectively. Tips on structuring your GitHub so that employers can instantly see your value. Moreover, we’ll discuss how you can use your portfolio to connect with top employers in AI, with a handy link to our CV-upload page on Artificial Intelligence Jobs for when you’re ready to apply. By the end, you’ll have a clear roadmap to building a portfolio that will help secure interviews—and the AI job—of your dreams.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.