Machine Learning Engineer - Sports AI

Hawk-Eye Innovations
Bristol
3 weeks ago
Create job alert

Location: One of our Basingstoke, Bristol, or London offices (Hybrid – 2 days in the office per week minimum)


Team: Machine Learning


Salary: £39,500 - £48,000


Start Date: As soon as possible


Join Our Team as a Machine Learning Engineer at Hawk-Eye Innovations:

Hi, I’m Lachlan, Technology Lead for the HawkAI team. I’m excited to invite you to apply for the Machine Learning Engineer position in our R&D team at Hawk-Eye Innovations. If you're passionate about defining the future of sports analytics, this could be the ideal role for you.


As a Machine Learning Engineer, you'll be at the heart of our development lifecycle. You’ll work closely with product managers, data stakeholders, and engineers across Data and Machine Learning Teams.


What Your Week Could Look Like:

A typical week might include:



  • Integrating cutting-edge ML features into HawkAI analysis products
  • Running ML models on live streams of tracking data
  • Designing algorithms to turn ML outputs into actionable insights
  • Helping to develop and deploy machine learning models with a focus on real-time performance
  • Building cloud and containerised systems for deployment at scale
  • Developing CI/CD and production pipelines to maintain robust software practices
  • Collaborating with product managers and engineers
  • Working with data teams to collect, store, and curate training data
  • Streamlining ML operations and performance pipelines

If you're passionate about defining the future of sports analytics and excited to work with cutting-edge deep learning methods, this could be the ideal role for you. And then integrating deep learning models into HawkAI Analysis Products


Tech Stack and Skill Requirements:

Required:



  • Python programming fundamentals
  • PyTorch
  • Linux & Windows 10 development experience
  • GIT, GitHub and collaborative software development

Nice-to-Haves:



  • AWS (S3, SageMaker, Lambdas)
  • MLOps, CI/CD processes
  • Docker and containerised deployments
  • PyTorch-Ignite
  • TypeScript & Semantic UI React
  • SSH and secure deployment workflows

Bonus Skills:



  • JIRA & Confluence
  • ClearML

What We Value:

At Hawk-Eye, our culture is built on openness, collaboration, and technical excellence. Here’s what we value in our team members:



  • Autonomy & Accountability – We trust our engineers to own their work and deliver impact
  • Mentorship & Leadership – As a senior team member, you’ll lead by example and uplift others
  • Pragmatism – We’re creative and experimental, but always grounded in real-world application
  • Continuous Learning – From peer code reviews to hack days and conferences, we never stop growing
  • Collaboration – We work cross-functionally and communicate with transparency and empathy

Equal Opportunity Employer:

Hawk-Eye is committed to fostering an inclusive and diverse workplace. We ensure all employees are treated fairly, regardless of gender, marital status, race, nationality, religion, age, disability, or union membership status. We value diversity and strive to create an environment where everyone can reach their full potential.


Apply Today!

This is a fantastic opportunity to join Hawk-Eye Innovations and make a significant impact in the sports technology industry. If you’re excited about solving complex ML problems in real-time and seeing your work on the world’s biggest sporting stages, we’d love to hear from you!


#J-18808-Ljbffr

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.