Machine Learning Engineer London

DARE
London
2 days ago
Create job alert

City of London

Permanent, Full-time - Onsite

Who we are:

We are an energy trading company generating liquidity across global commodities markets. We combine deep trading expertise with proprietary technology and the power of data science to be the best-in-class. Our understanding of volatile, data-intensive markets is a key part of our edge.

At Dare, you will be joining a team of ambitious individuals who challenge themselves and each other. We have a culture of empowering exceptional people to become the best version of themselves.

What you’ll be doing:

The Machine Learning Engineer role is a key role within the technical space at Dare. Working closely with a talented technical team to build a platform that delivers ML capabilities to our Liquidity trading teams. These teams are responsible for delivering products for internal customers. Setting and delivering a consistent, scalable approach to machine learning across the organisation is one of the key success criteria for this role. The role requires building relationships and collaborating with Senior Leaders across the business to shape a strategy that delivers models that provide our traders with a competitive edge.

  • Using Dare’s proprietary trading data and models to drive trading PNL.
  • Developing trading indicators and strategies powered by machine learning.
  • Partnering with quantitative research and algorithmic trading technology teams.
  • Collaborating with the CEO and other senior stakeholders to combine domain knowledge with engineering expertise.

What you’ll bring

  • 3+ years experience in machine learning algorithms, software engineering, and data mining models with an emphasis on large language models (LLM).
  • A background in maths, statistics, and algorithms, with the capability to write robust scalable Python code.
  • A strong understanding of the mathematical and statistical fundamentals on which the ML methods are based. We want someone who understands the methods rather than just calling functions from existing ML packages.
  • Experience with production data processing. That includes data manipulation, data cleansing, aggregation, efficient (pre-)processing, etc.
  • Experience with time-series data, including storage and management.
  • A strong understanding through the usage of machine learning frameworks (TenserFlow, PyTorch, sci-kit-learn, Huggingface).
  • Ability to work with analytical teams to build dashboards that prove the value of the machine learning capabilities as we deliver models to our production environments.

Desirable:

  • Experience working with real-time data systems.
  • Experience working with cloud-based solutions.

Benefits & perks:

  • Competitive salary
  • Vitality health insurance and dental cover
  • 38 days of holiday (including bank holidays)
  • Pension scheme
  • Annual Bluecrest health checks
  • A personal learning & development budget of £5000
  • Free gym membership
  • Specsavers vouchers
  • Enhanced family leave
  • Cycle to Work scheme
  • Credited Deliveroo dinner account
  • Office massage therapy
  • Freshly served office breakfast twice a week
  • Fully stocked fridge and pantry
  • Social events and a games room

Diversity matters:

We believe in a workplace where our people can fulfill their potential, whatever their background or whomever they are. We celebrate the breadth of experience and see this as critical to problem-solving and to Dare thriving as a business. Our culture rewards curiosity and drive, so the best ideas triumph and everyone here can make an impact.

Please let us know ahead of the interview and testing processes if you require any reasonable adjustments or assistance during the application process.

We’re also proud to be certified a ‘Great Place to Work’.Read more about our culture and what our team says about us here.

#J-18808-Ljbffr

Related Jobs

View all jobs

Machine Learning Engineer, London

Machine Learning Engineer, London

Machine Learning Engineer, London

Machine Learning Engineer - Personalisation London

Senior/Lead Machine Learning Engineer (Predictions) London

Senior Machine Learning Engineer - Search - London

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for AI Jobs (With Real GitHub Examples)

In the fast-evolving world of artificial intelligence (AI), an impressive portfolio of projects can act as your passport to landing a sought-after role. Even if you’ve aced interviews in the past, employers in AI and machine learning (ML) are increasingly asking candidates to demonstrate hands-on experience through the projects they’ve built and shared online. This is because practical ability often speaks volumes about your suitability for a role—far more than any exam or certification alone could. In this article, we’ll explore how to build an outstanding AI portfolio that catches the eye of recruiters and hiring managers, including: Why an AI portfolio is crucial for job seekers. How to choose AI projects that align with your target roles. Specific project ideas and real GitHub examples to help you stand out. Best practices for showcasing your work, from writing clear READMEs to using Jupyter notebooks effectively. Tips on structuring your GitHub so that employers can instantly see your value. Moreover, we’ll discuss how you can use your portfolio to connect with top employers in AI, with a handy link to our CV-upload page on Artificial Intelligence Jobs for when you’re ready to apply. By the end, you’ll have a clear roadmap to building a portfolio that will help secure interviews—and the AI job—of your dreams.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.