Machine Learning Engineer II

Zonda
Glasgow
5 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist II - QuantumBlack Labs

Machine Learning Engineering Lead

Machine Learning Engineering Manager, Gen AI

Engineering Manager, Machine Learning, Marketplace, Ecommerce, | 35 Million Users | UK Remote O[...]

Engineering Manager, Machine Learning, Marketplace, Ecommerce, | 35 Million Users | UK Remote O[...]

2026 Summer Internship, Machine Learning Engineering - PhD (London)

Machine Learning Engineer (NLP) II

Remote | UK | Full Time

The ML Engineer (Natural Language Processing) II is a mid-level position responsible for Natural Language models-based product development and maintenance. As a mid-level engineer in this role, you will work closely with senior engineers and non-technical business stake holders, contributing to the entire lifecycle of building and maintaining emerging LLM/NLP-based ML products. An important aspect of this role would be product design and execution bearing cost efficiency and speed. The ideal candidate would have skills in software programming, ML, agentic workflows, mathematics, and DevOps. Good communication skills with an ability to demystify ML algorithms and capabilities is a must, as stakeholders in ML products include software engineering teams as well as non-technical business partners.

What You'll Do

Curation, cleaning, and maintenance of datasets for NLP/LLM models. Develop, optimise, and deploy NLP/LLM models. Work with agentic frameworks like LangChain, CrewAI, or AutoGen to develop multi[1]step agents or workflows Work with Product stakeholders to capture and establish requirements for natural language models-based products. Collaborate with Product Managers, software engineering teams, and other departments to design NLP products for inference. Steer consolidation of dataset requirements, acquiring data, annotation, management, and version control for NLP applications. Monitor ML models in production, setting metrics to identify drift, and establish corrective measures for restoring model performance. Identify and implement appropriate tools for monitoring product performance in inference. Ownership of technical documentation related to datasets, model selection, training experiments, and production infrastructure. Continual learning and self-improvement with a focus on latest trends, techniques, and best practices in Machine Learning.

Who You Are

Bachelor's degree in computer science, Engineering, or a related field. 3+ years of experience in Machine Learning, Data Science, or a related field. Proficient in Python and working knowledge of ML libraries PyTorch and scikit-learn. You’ve built and deployed at least one LLM-based or NLP-heavy product in a real setting likely using agentic frameworks like LangGraph, LangChain, AutoGen etc. Strong mathematical, analytical, and problem-solving skills. Experience with retrieval systems, embeddings, and vector DBs like Weaviate or Pinecone. Good understanding of Machine Learning algorithms and models (Language processing models such as GPT, BERT, etc). Experience in designing ML products for inference in cloud. Ability to structure and execute an ML project from start to completion, for both training and inference. Excellent communication and teamwork skills; ability to work in a team. Experience with cloud computing platforms like AWS, Google Cloud, or Azure. Familiarity with containerization and orchestration tools like Docker and Kubernetes. Experience with version control systems like Git.

Nice to have.

Masters in a specific field such as Statistics, Data Science, Machine Learning, or AI. Utilization of Generative AI models. Knowledge of SQL and NoSQL databases including construction of queries, query optimization, and schema design. API development using standard tools such as FastAPI or Flask

Administrative 

The candidate must have the right to work in UK

Why People Love Working Here 

We offer meaningful work and opportunities for career growth Competitive Salary Comprehensive benefit package (Medical, Dental, Vision) Paid vacation and general holidays Education Allowance Employee & Family Assistance Program (EFAP)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.