Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning Engineer II

Zonda
Glasgow
2 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer II, Marketing Testing

Machine Learning Engineer II, Intelligent Talent Acquisition - Lead Generation & Detection Services

Machine Learning Engineer II, Intelligent Talent Acquisition - Lead Generation & Detection Services

Machine Learning Engineer II, Marketing Testing

Machine Learning Engineer II, Intelligent Talent Acquisition - Lead Generation & Detection Services

Machine Learning Ops Engineer III

Machine Learning Engineer (NLP) II

Remote | UK | Full Time

The ML Engineer (Natural Language Processing) II is a mid-level position responsible for Natural Language models-based product development and maintenance. As a mid-level engineer in this role, you will work closely with senior engineers and non-technical business stake holders, contributing to the entire lifecycle of building and maintaining emerging LLM/NLP-based ML products. An important aspect of this role would be product design and execution bearing cost efficiency and speed. The ideal candidate would have skills in software programming, ML, agentic workflows, mathematics, and DevOps. Good communication skills with an ability to demystify ML algorithms and capabilities is a must, as stakeholders in ML products include software engineering teams as well as non-technical business partners.

What You'll Do

Curation, cleaning, and maintenance of datasets for NLP/LLM models. Develop, optimise, and deploy NLP/LLM models. Work with agentic frameworks like LangChain, CrewAI, or AutoGen to develop multi[1]step agents or workflows Work with Product stakeholders to capture and establish requirements for natural language models-based products. Collaborate with Product Managers, software engineering teams, and other departments to design NLP products for inference. Steer consolidation of dataset requirements, acquiring data, annotation, management, and version control for NLP applications. Monitor ML models in production, setting metrics to identify drift, and establish corrective measures for restoring model performance. Identify and implement appropriate tools for monitoring product performance in inference. Ownership of technical documentation related to datasets, model selection, training experiments, and production infrastructure. Continual learning and self-improvement with a focus on latest trends, techniques, and best practices in Machine Learning.

Who You Are

Bachelor's degree in computer science, Engineering, or a related field. 3+ years of experience in Machine Learning, Data Science, or a related field. Proficient in Python and working knowledge of ML libraries PyTorch and scikit-learn. You’ve built and deployed at least one LLM-based or NLP-heavy product in a real setting likely using agentic frameworks like LangGraph, LangChain, AutoGen etc. Strong mathematical, analytical, and problem-solving skills. Experience with retrieval systems, embeddings, and vector DBs like Weaviate or Pinecone. Good understanding of Machine Learning algorithms and models (Language processing models such as GPT, BERT, etc). Experience in designing ML products for inference in cloud. Ability to structure and execute an ML project from start to completion, for both training and inference. Excellent communication and teamwork skills; ability to work in a team. Experience with cloud computing platforms like AWS, Google Cloud, or Azure. Familiarity with containerization and orchestration tools like Docker and Kubernetes. Experience with version control systems like Git.

Nice to have.

Masters in a specific field such as Statistics, Data Science, Machine Learning, or AI. Utilization of Generative AI models. Knowledge of SQL and NoSQL databases including construction of queries, query optimization, and schema design. API development using standard tools such as FastAPI or Flask

Administrative 

The candidate must have the right to work in UK

Why People Love Working Here 

We offer meaningful work and opportunities for career growth Competitive Salary Comprehensive benefit package (Medical, Dental, Vision) Paid vacation and general holidays Education Allowance Employee & Family Assistance Program (EFAP)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.