National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Engineer – Generative AI & NLP Specialist

Welocalize
6 months ago
Applications closed

Related Jobs

View all jobs

Senior Machine Learning Engineer

Senior Data Scientist - Tax, Technology and Transformation

Senior Data Scientist - Tax, Technology and Transformation

Senior Data Scientist - Tax, Technology and Transformation

AI Engineer

Data Science Manager - Tax Technology and Transformation

OVERVIEW


The Machine Learning Engineer – Generative AI & NLP Specialist to design, develop, and implement cutting-edge AI-driven systems. This role will focus on enhancing translation systems using advanced NLP techniques and Generative AI (GenAI). The ideal candidate will have extensive experience in end-to-end machine learning (ML) lifecycles, large language models (LLMs), and the ability to create scalable, secure, and efficient AI solutions.
KEY RESPONSIBILITIES
- Design and optimize translation systems leveraging advanced NLP and Generative AI (GenAI) techniques.- Focus on delivering contextually accurate, multilingual solutions with domain-specific customizations to meet diverse client needs.- Continuously improve performance using metrics like BLEU scores and human evaluation benchmarks.- Take ownership of the entire machine learning pipeline, from prototyping and concept validation to scalable production deployment.- Collaborate with cross-functional teams to align solutions with business objectives and ensure seamless integration.- Implement monitoring frameworks to track model performance, detect anomalies, and ensure reliability in production.- Automate pipelines for model retraining and fine-tuning to address data drift and maintain accuracy.- Deploy highly scalable inference endpoints that handle concurrent requests efficiently while maintaining low latency.- Ensure compliance with security standards, including encryption, access control, and API authentication.- Develop well-documented APIs to enable seamless integration of GenAI capabilities into applications and external systems.- Support API versioning and updates to meet evolving requirements.- Work with vector and graph databases to enable efficient Retrieval-Augmented Generation (RAG) systems.- Optimize data retrieval processes and evaluate RAG metrics, such as precision and relevance, to ensure high-quality results.
REQUIREMENTS
- Deep understanding of the full ML lifecycle, including development, training, deployment, and maintenance.- Proficiency in tools like Weights & Biases (W&B) or MLflow to track and manage experiments.- Strong Python programming skills, with expertise in ML libraries such as LangChain, LlamaIndex, PyTorch, TensorFlow, NumPy, SciPy, pandas, and scikit-learn.- Experience designing APIs with industry best practices.- Strong knowledge of large language models, including open-source and commercial implementations, and their practical applications.- Basic experience in building or deploying AI agents for specialized tasks.- Hands-on experience with vector and graph databases, including understanding metrics for evaluating RAG systems.- Proficiency in cloud platforms, preferably Google Cloud Platform (GCP).- Familiarity with Docker and containerization technologies.- Proven ability to ensure that GenAI deployments are scalable, secure, and efficient.

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better AI Job After a Lay-Off or Redundancy

Being made redundant or laid off can feel like the rug has been pulled from under you. Whether part of a wider company restructuring, budget cuts, or market shifts in tech, many skilled professionals in the AI industry have recently found themselves unexpectedly jobless. But while redundancy brings immediate financial and emotional stress, it can also be a powerful catalyst for career growth. In the fast-evolving field of artificial intelligence, where new roles and specialisms emerge constantly, bouncing back stronger is not only possible—it’s likely. In this guide, we’ll walk you through a step-by-step action plan for turning redundancy into your next big opportunity. From managing the shock to targeting better AI jobs, updating your CV, and approaching recruiters the smart way, we’ll help you move from setback to comeback.

AI Jobs Salary Calculator 2025: Work Out Your Market Value in Seconds

Why your 2024 salary data is already outdated “Am I being paid what I’m worth?” It is the question that creeps in whenever you update your CV, see a former colleague announce a punchy pay rise on LinkedIn, or notice a recruiter slide into your inbox with a role that looks eerily similar to your current one—only advertised at £20k more. Artificial intelligence moves faster than any other hiring market. New frameworks are open‑sourced overnight, venture capital floods specific niches without warning, & entire job titles—Prompt Engineer, LLM Ops Specialist—appear in the time it takes most industries to schedule a meeting. In that environment, salary guides published only a year ago already look like historical curiosities. To give AI professionals an up‑to‑the‑minute benchmark, ArtificialIntelligenceJobs.co.uk has built a simple yet powerful salary‑calculation formula. By combining three variables—role, UK region, & seniority—you can estimate a realistic 2025 salary band in less than a minute. This article explains that formula, unpacks the latest trends driving pay, & offers concrete steps to boost your personal market value over the next 90 days.

How to Present AI Models to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

In today’s competitive job market, AI professionals are expected to do more than just build brilliant algorithms—they must also explain them clearly to stakeholders who may have no technical background. Whether you're applying for a role as a machine learning engineer, data scientist, or AI consultant, your ability to articulate complex models in simple terms is fast becoming one of the most valued soft skills in interviews and on the job. This guide will help you master the art of public speaking for AI roles, offering tips on structuring presentations, designing effective slides, and using storytelling to make your work resonate with any audience.