Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning Engineer, Generative AI Innovation Center

AWS EMEA SARL (UK Branch)
London
2 days ago
Create job alert

Amazon launched the Generative AI (GenAI) Innovation Center (GenAIIC) in Jun 2023 to help AWS customers accelerate enterprise innovation and success with Generative AI ( Customers such as Highspot, Lonely Planet, Ryanair, and Twilio are engaging with the GAI Innovation Center to explore developing generative solutions.

GenAIIC provides opportunities to innovate in a fast-paced organization that contributes to game-changing projects and technologies that get deployed on devices and in the cloud.

As a Machine Learning Engineer in GenAIIC, you are proficient in developing and deploying advanced ML models and pipelines to solve diverse customer problems using Gen AI. You will be working alongside scientists with terabytes of text, images, and other types of data and develop Gen AI based solutions to solve real-world problems. You'll design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience.

Key job responsibilities
Our ML Engineers collaborate across diverse teams, projects, and environments to have a firsthand impact on our global customer base. You’ll bring a passion for the intersection of software development with generative AI and machine learning. You’ll also:

- Solve complex technical problems, often ones not solved before, at every layer of the stack.
- Design, implement, test, deploy and maintain innovative ML solutions to transform service performance, durability, cost, and security.
- Build high-quality, highly available, always-on products.
- Research implementations that deliver the best possible experiences for customers.

A day in the life
As you design and code solutions to help our team drive efficiencies in ML architecture, you’ll create metrics, implement automation and other improvements, and resolve the root cause of software defects. You’ll also:

- Build high-impact ML solutions to deliver to our large customer base.
- Participate in design discussions, code review, and communicate with internal and external stakeholders.
- Work cross-functionally to help drive business solutions with your technical input.
- Work in a startup-like development environment, where you’re always working on the most important stuff.

About the team
Diverse Experiences
AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.

Why AWS?
Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses.

Inclusive Team Culture
Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness.

Mentorship & Career Growth
We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.

Work/Life Balance
We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.

BASIC QUALIFICATIONS

- Experience in professional, non-internship software development
- Experience leading the architecture and design (architecture, design patterns, reliability and scaling) of new and current systems, or experience in development in the last 3 years
- Experience building complex software systems that have been successfully delivered to customers, or experience in computer architecture
- Experience as a mentor, tech lead or leading an engineering team
- Experience with data scripting languages (e.g. SQL, Python, R etc.) or statistical/mathematical software (e.g. R, SAS, or Matlab)

PREFERRED QUALIFICATIONS

- Experience with full software development life cycle, including coding standards, code reviews, source control management, build processes, testing, and operations
- Bachelor's degree in computer science or equivalent

Related Jobs

View all jobs

Senior MLOps Engineer

Senior Data Scientist, Model Customization, Generative AI Innovation Center, Model Customization

Machine Learning Engineer, Controllable GAIA

Applied AI & Data Scientist

Executive Director / Principal Data Scientist

Senior Data Scientist (UK)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we head into 2026, the AI hiring market in the UK is going through one of its biggest shake-ups yet. Economic conditions are still tight, some employers are cutting headcount, & AI itself is automating whole chunks of work. At the same time, demand for strong AI talent is still rising, salaries for in-demand skills remain high, & new roles are emerging around AI safety, governance & automation. Whether you are an AI job seeker planning your next move or a recruiter trying to build teams in a volatile market, understanding the key AI hiring trends for 2026 will help you stay ahead. This guide breaks down the most important trends to watch, what they mean in practice, & how to adapt – with practical actions for both candidates & hiring teams.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.