National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Engineer, Generative AI Innovation Center

Amazon
London
3 days ago
Create job alert

Machine Learning Engineer, Generative AI Innovation Center

Job ID: 2943066 | Amazon Web Services Singapore Private Limited

Amazon launched the Generative AI (GenAI) Innovation Center (GenAIIC) in Jun 2023 to help AWS customers accelerate enterprise innovation and success with Generative AI. Customers such as Highspot, Lonely Planet, Ryanair, and Twilio are engaging with the GAI Innovation Center to explore developing generative solutions.

GenAIIC provides opportunities to innovate in a fast-paced organization that contributes to game-changing projects and technologies that get deployed on devices and in the cloud.

As a Machine Learning Engineer in GenAIIC, you are proficient in developing and deploying advanced ML models and pipelines to solve diverse customer problems using Gen AI. You will be working alongside scientists with terabytes of text, images, and other types of data and develop Gen AI based solutions to solve real-world problems. You'll design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience.

Key job responsibilities
Our ML Engineers collaborate across diverse teams, projects, and environments to have a firsthand impact on our global customer base. You’ll bring a passion for the intersection of software development with generative AI and machine learning. You’ll also:

  1. Solve complex technical problems, often ones not solved before, at every layer of the stack.
  2. Design, implement, test, deploy and maintain innovative ML solutions to transform service performance, durability, cost, and security.
  3. Build high-quality, highly available, always-on products.
  4. Research implementations that deliver the best possible experiences for customers.


A day in the life
As you design and code solutions to help our team drive efficiencies in ML architecture, you’ll create metrics, implement automation and other improvements, and resolve the root cause of software defects. You’ll also:

  1. Build high-impact ML solutions to deliver to our large customer base.
  2. Participate in design discussions, code review, and communicate with internal and external stakeholders.
  3. Work cross-functionally to help drive business solutions with your technical input.
  4. Work in a startup-like development environment, where you’re always working on the most important stuff.


About the team
AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.

Why AWS?
Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses.

Inclusive Team Culture
Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness.

Mentorship & Career Growth
We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.

Work/Life Balance
We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.BASIC QUALIFICATIONS

- 8+ years of non-internship professional software development experience
- 5+ years of leading design or architecture (design patterns, reliability and scaling) of new and existing systems experience
- Experience building complex software systems that have been successfully delivered to customers
- Experience as a mentor, tech lead or leading an engineering team
- 5+ years experience in data querying languages (e.g. SQL), scripting languages (e.g. Python) with exposure to machine learning/statistical modeling data analysis tools and techniques, and parameters that affect their performance experience

PREFERRED QUALIFICATIONS

- 5+ years of full software development life cycle, including coding standards, code reviews, source control management, build processes, testing, and operations experience
- Bachelor's degree in computer science or equivalent

Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status.


#J-18808-Ljbffr

Related Jobs

View all jobs

Machine Learning Engineer, AWS Generative AI Innovation Center (Basé à London)

Machine Learning Engineer, AWS Generative AI Innovation Center

Machine Learning Engineer, AWS Generative AI Innovation Center (Basé à London)

Machine Learning Engineer, AWS Generative AI Innovation Center

Research Scientist - Artificial Intelligence (AI)

Senior Machine Learning Ops Engineer

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better AI Job After a Lay-Off or Redundancy

Being made redundant or laid off can feel like the rug has been pulled from under you. Whether part of a wider company restructuring, budget cuts, or market shifts in tech, many skilled professionals in the AI industry have recently found themselves unexpectedly jobless. But while redundancy brings immediate financial and emotional stress, it can also be a powerful catalyst for career growth. In the fast-evolving field of artificial intelligence, where new roles and specialisms emerge constantly, bouncing back stronger is not only possible—it’s likely. In this guide, we’ll walk you through a step-by-step action plan for turning redundancy into your next big opportunity. From managing the shock to targeting better AI jobs, updating your CV, and approaching recruiters the smart way, we’ll help you move from setback to comeback.

AI Jobs Salary Calculator 2025: Work Out Your Market Value in Seconds

Why your 2024 salary data is already outdated “Am I being paid what I’m worth?” It is the question that creeps in whenever you update your CV, see a former colleague announce a punchy pay rise on LinkedIn, or notice a recruiter slide into your inbox with a role that looks eerily similar to your current one—only advertised at £20k more. Artificial intelligence moves faster than any other hiring market. New frameworks are open‑sourced overnight, venture capital floods specific niches without warning, & entire job titles—Prompt Engineer, LLM Ops Specialist—appear in the time it takes most industries to schedule a meeting. In that environment, salary guides published only a year ago already look like historical curiosities. To give AI professionals an up‑to‑the‑minute benchmark, ArtificialIntelligenceJobs.co.uk has built a simple yet powerful salary‑calculation formula. By combining three variables—role, UK region, & seniority—you can estimate a realistic 2025 salary band in less than a minute. This article explains that formula, unpacks the latest trends driving pay, & offers concrete steps to boost your personal market value over the next 90 days.

How to Present AI Models to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

In today’s competitive job market, AI professionals are expected to do more than just build brilliant algorithms—they must also explain them clearly to stakeholders who may have no technical background. Whether you're applying for a role as a machine learning engineer, data scientist, or AI consultant, your ability to articulate complex models in simple terms is fast becoming one of the most valued soft skills in interviews and on the job. This guide will help you master the art of public speaking for AI roles, offering tips on structuring presentations, designing effective slides, and using storytelling to make your work resonate with any audience.