Machine Learning Engineer - GenAI

Experian
London
2 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer (NLP)

Senior Machine Learning Engineer

Lead Machine Learning Engineer

Machine Learning / Computer Vision Engineer – Data Scientist

Company Description

Experian is a global data and technology company, powering opportunities for people and businesses around the world. We help to redefine lending practices, uncover and prevent fraud, simplify healthcare, create marketing solutions, and gain deeper insights into the automotive market, all using our unique combination of data, analytics and software. We also assist millions of people to realise their financial goals and help them save time and money.

We operate across a range of markets, from financial services to healthcare, automotive, agribusiness, insurance, and many more industry segments.

We invest in people and new advanced technologies to unlock the power of data. As a FTSE 100 Index company listed on the London Stock Exchange (EXPN), we have a team of 22,500 people across 32 countries. Our corporate headquarters are in Dublin, Ireland. Learn more at www.experianplc.com

Job Description

Grade : D/C

Location: London/Hybrid

The GenAI CoE function consists of teams of Product Managers, ML Engineers and Data Scientists dedicated to building rapid prototypes of new Experian data products, that spearhead the next wave of product innovations using generative AI.

The Machine Learning Engineering team in the CoE facilitates the transition of concepts and proved ideas into products and services that Experian can take to their customers, whether that be businesses or direct to consumers. To do this, we build upon the outcomes of our experiments to meet the product requirements - considering performance, maintainability, and scalability.

Reporting into our Delivery Manager, we are seeking an experienced Senior to Mid-level Developer to deliver machine learning solutions from concept to production-ready solutions, embracing standard industry processes such as Agile, DevOps, version control and model management. You will work with large data sets to build solutions, thinking about the design and architecture of the product and how it can be scaled.

This is a really exciting opportunity for someone who has an interest in the commercial application of machine learning solutions and is keen to discover and introduce new technologies into the team.

Qualifications

  1. Advanced proficiency in Python, with a foundation in OOP, SOLID principles, TDD, and domain driven design.
  2. Experience with prompt engineering.
  3. Experience with one or more additional programming languages (Java, JavaScript, C++, Go, C#) is beneficial.
  4. Experience of machine learning frameworks and toolkits such as sklearn, XGboost, TensorFlow.
  5. Good cloud skills AWS & Azure.
  6. Familiarity with Unix and scripting languages.
  7. Proficient with Docker working in any container orchestrator such as k8s, OpenShift, Docker swarm.

Additional Information

Our uniqueness is that we truly celebrate yours. Experian's culture and people are key differentiators. We take our people agenda very seriously and focus on what truly matters; DEI, work/life balance, development, authenticity, engagement, collaboration, wellness, reward & recognition, volunteering... the list goes on. Experian's strong people first approach is award winning; Great Place To Work in 24 countries, FORTUNE Best Companies to work and Glassdoor Best Places to Work (globally 4.4 Stars) to name a few. Check out Experian Life on social or our Careers Site to understand why.

Experian is proud to be an Equal Opportunity and Affirmative Action employer. Innovation is a critical part of Experian's DNA and practices, and our diverse workforce drives our success. Everyone can succeed at Experian and bring their whole self to work, irrespective of their gender, ethnicity, religion, colour, sexuality, physical ability or age. If you have a disability or special need that requires accommodation, please let us know at the earliest opportunity.

#LI-ST1 #Hybrid

Experian Careers - Creating a better tomorrow together

Find out what it's like to work for Experian by clicking here.

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 Ways AI Pros Stay Inspired: Boost Creativity with Side Projects, Hackathons & More

In the rapidly evolving world of Artificial Intelligence (AI), creativity and innovation are critical. AI professionals—whether data scientists, machine learning engineers, or research scientists—must constantly rejuvenate their thinking to solve complex challenges. But how exactly do these experts stay energised and creative in their work? The answer often lies in a combination of strategic habits, side projects, hackathons, Kaggle competitions, reading the latest research, and consciously stepping out of comfort zones. This article will explore why these activities are so valuable, as well as provide actionable tips for anyone looking to spark new ideas and enrich their AI career. Below, we’ll delve into tried-and-tested strategies that AI pros employ to drive innovation, foster creativity, and maintain an inspired outlook in an industry that can be both exhilarating and daunting. Whether you’re just starting your AI journey or you’re an experienced professional aiming to sharpen your skills, these insights will help you break out of ruts, discover fresh perspectives, and bring your boldest ideas to life.

Top 10 AI Career Myths Debunked: Key Facts for Aspiring Professionals

Artificial Intelligence (AI) is one of the most dynamic and rapidly growing sectors in technology today. The lure of AI-related roles continues to draw a diverse range of job seekers—from seasoned software engineers to recent graduates in fields such as mathematics, physics, or data science. Yet, despite AI’s growing prominence and accessibility, there remains a dizzying array of myths surrounding careers in this field. From ideas about requiring near-superhuman technical prowess to assumptions that machines themselves will replace these jobs, the stories we hear sometimes do more harm than good. In reality, the AI job market offers far more opportunities than the alarmist headlines and misconceptions might suggest. Here at ArtificialIntelligenceJobs.co.uk, we witness firsthand the myriad roles, backgrounds, and success stories that drive the industry forward. In this blog post, we aim to separate fact from fiction—taking the most pervasive myths about AI careers and debunking them with clear, evidence-based insights. Whether you are an established professional considering a career pivot into data science, or a student uncertain about whether AI is the right path, this article will help you gain a realistic perspective on what AI careers entail. Let’s uncover the truth behind the most common myths and discover the actual opportunities and realities you can expect in this vibrant sector.

Global vs. Local: Comparing the UK AI Job Market to International Landscapes

How to navigate salaries, opportunities, and work culture in AI across the UK, the US, Europe, and Asia Artificial Intelligence (AI) has evolved from a niche field of research to an integral component of modern industries—powering everything from chatbots and driverless cars to sophisticated data analytics in finance and healthcare. The job market for AI professionals is consequently booming, with thousands of new positions posted each month worldwide. In this blog post, we will explore how the UK’s AI job market compares to that of the United States, Europe, and Asia, delving into differences in job demand, salaries, and workplace culture. Additionally, we will provide insights for candidates considering remote or international opportunities. Whether you are a freshly qualified graduate in data science, an experienced machine learning engineer, or a professional from a parallel domain looking to transition into AI, understanding the global vs. local landscape can help you make an informed decision about your career trajectory. As the demand for artificial intelligence skills grows—and borders become more porous with hybrid and remote work—the possibilities for ambitious job-seekers are expanding exponentially. This article will offer a comprehensive look at the various regional markets, exploring how the UK fares in comparison to other major AI hubs. We’ll also suggest factors to consider when choosing where in the world to work, whether physically or remotely. By the end, you’ll have a clearer picture of the AI employment landscape, and you’ll be better prepared to carve out your own path.