National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Engineer - Fixed Term Contract · London · (London)

Oddbox
London
2 weeks ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer - RAG Experience - Founding Engineer

Machine Learning Engineer - RAG Experience - Founding Engineer

Machine Learning Engineer - Generative AI

Lead Machine Learning Engineer – Forecasting (3-Month Contract)

Location:Hybrid (minimum 1 day/week in our Vauxhall, London office)
Contract Type:Full-time, Fixed-Term (3 months)
Salary:Competitive, based on experience
Eligibility:UK-based applicants only

About Oddbox

Oddbox is on a mission to fight food waste and transform the food system through our fruit and veg subscription service. To date, we've rescued over 50 million kilograms of produce that would have otherwise gone to waste — but we’re just getting started.

As we scale our environmental impact, we’re investing in smarter technology and forward-looking ML capabilities. We're now seeking an accomplishedLead Machine Learning Engineerto spearhead innovation inforecasting and customer behaviour modelling, enabling more sustainable, data-driven operations.

About the Role

This is acontract-to-impactopportunity for anexperienced ML leader or Staff+ individual contributorwho thrives in lean, product-oriented environments. You’ll be responsible forshaping and delivering end-to-end forecasting systemsthat influence core supply chain and customer engagement decisions.

You will:

Lead high-stakes forecasting projects — from ambiguous ideas to productionised ML systems

Architect and deploy solutions in collaboration with Product, Engineering, and Ops

Ensure data and model pipelines are scalable, reproducible, and value-driven

Create measurable business impact within a focused 3-month engagement, with potential for longer-term collaboration

We’re looking for someoneautonomous, decisive, and outcome-obsessed— capable of steering technical decisions, influencing stakeholders, and shipping ML systems that matter.

Responsibilities

Forecasting Impact: Design, develop, and deploy forecasting models that optimise supply, reduce food waste, and improve customer outcomes

Technical Leadership: Define modelling approaches, data strategies, and validation pipelines in a cross-functional context

Strategic Execution: Rapidly prioritise, structure, and execute on projects with evolving requirements and commercial pressure

System Architecture: Build production-grade, containerised models using modern MLOps practices — integrating with cloud pipelines and multi-source data

Data-Driven Culture: Drive experimentation, model performance monitoring, and business integration of ML outputs

What We’re Looking For

8+ yearsof experience delivering ML models into production, includingtime-series forecastingorcustomer lifecycle modelling

Proven ability to lead complex technical initiatives from ideation through to impact inhigh-autonomy environments

Track record of building forecasting systems with measurable commercial or operational value

Advanced Python proficiency and familiarity with libraries likeXGBoost, Prophet, PyTorch, Scikit-learn

Deep knowledge ofMLOps, reproducibility practices, and scalable experimentation

Experience deploying models withCI/CD pipelines, containerisation, and cloud tools (e.g.,SageMaker, Vertex AI, GCP pipelines)

Strong data engineering instincts — including building and optimisingETL processesfor large, structured and unstructured datasets

Exceptional collaboration skills with the ability to influence both technical and non-technical stakeholders

Our Hiring Process

We value efficiency and depth. Our process is designed to evaluate how you think, architect, and lead — not just what you can code.

Introductory Call (15 minutes)
A short conversation to align expectations, discuss the scope, and answer your initial questions.

Strategic Forecasting Deep Dive (Take-Home Proposal)
You’ll receive a realistic brief outlining a forecasting challenge relevant to our domain. We’ll ask you to prepare astructured proposaldescribing how you would approach the problem — including your assumptions, modelling choices, data needs, and delivery roadmap.

We’re not testing syntax — we’re evaluating your ability to frame problems, communicate clearly, and drive outcomes.

Final Interview (90 minutes)
A collaborative session with our Data and Product teams focused on your approach, technical architecture, decision-making, and stakeholder alignment.

Final Note

This is a rare opportunity to make an immediate, mission-driven impact at a company that values experimentation, autonomy, and sustainability. If you're aLead or Staff-level ML Engineerready to shape forecasting strategy and ship high-leverage systems, we’d love to hear from you.


#J-18808-Ljbffr

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

LinkedIn Profile Checklist for AI Jobs: 10 Tweaks That Triple Recruiter Views

In today’s fiercely competitive AI job market, simply having a LinkedIn profile isn’t enough. Recruiters and hiring managers routinely scout for top talent in machine learning, data science, natural language processing, computer vision and beyond—sometimes before roles are even posted. With hundreds of applicants vying for each role, you need a profile that’s optimised for search, speaks directly to AI-specific skills, and showcases measurable impact. By following this step-by-step LinkedIn for AI jobs checklist, you’ll make ten strategic tweaks that can triple recruiter views and position you as a leading AI professional. Whether you’re a fresh graduate aiming for your first AI position or a seasoned expert targeting a senior role, these actionable changes will ensure your profile stands out in feeds, search results and recruiter queues. Let’s dive in.

Part-Time Study Routes That Lead to AI Jobs: Evening Courses, Bootcamps & Online Masters

Artificial intelligence (AI) is reshaping industries at an unprecedented pace. From automating mundane tasks in finance to driving innovation in healthcare diagnostics, the demand for AI-skilled professionals is skyrocketing. In the United Kingdom alone, AI is forecast to deliver over £400 billion to the economy by 2030 and generate millions of new jobs across sectors. Yet, for many ambitious professionals, taking time away from work to upskill can feel like an impossible ask. Thankfully, part-time learning options have proliferated: evening courses, intensive bootcamps and flexible online master’s programmes empower you to learn AI while working. This comprehensive guide explores every route—from short tasters to deep-dive MScs—showcasing providers, course formats, funding options and practical tips. Whether you’re a career changer, a busy manager or a self-taught developer keen to go further, you’ll discover a pathway to fit your schedule, budget and goals.