Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning Engineer - Fintech – Remote

Wealth Dynamix
London
4 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer – Insurance

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Machine Learning Computer Vision Engineer

Senior Computer Vision Engineer

Machine Learning Engineer - Fintech – Remote

Machine Learning Engineerwanted as our team is growing fast!

Calling highly motivated, bright candidates who are looking for a career at an exciting award winning FinTech firm!

Company: Wealth Dynamix

Role: Machine Learning Engineer

Location: London

Start Date: June / July 2025

Would you like to join one of the fastest growing FinTech firms in Europe? We are looking for an analytical self-starter with experience in deploying AI ? ML models in the capacity of a Data Engineer. If you are passionate about digital transformation and keen to learn about delivering the market leading Client Lifecycle Managing solution to the Wealth Management industry, apply now!

Who are we?

  • Wealth Dynamix helps to relieve the burden of client management issues for wealth management and private banking firms with innovative technology.
  • We provide Relationship Managers with a multi-award winning digital Client Lifecycle Management (CLM) platform, offering 360-degree access to their client.
  • We are a global leader in end-to-end CLM, Wealth Dynamix has offices and clients in three continents with headquarters in the UK.

What is the role?

This role is geared toward building internal ML tooling capabilities and bringing LLM/NLP-based features into production, ensuring they are scalable, reliable, and tightly integrated within our on premise and SaaS platform.

This is a deployment-first role, for someone who excels at data and model pipeline engineering, thrives in a collaborative cross-functional team, and wants to grow while gaining exposure to innovative tooling in the LLM and MLOps space

Main Purpose of Role

LLM/NLP Production Engineering

  • Build and maintain scalable, production-ready pipelines for Natural Language Processing and Large Language Model (LLM) features.
  • Package and deploy inference services for ML models and prompt-based LLM workflows using containerised services.
  • Ensure reliable model integration across real-time APIs and batch processing systems.

Pipeline Automation & MLOps

  • Use Apache Airflow (or similar) to orchestrate ETL and ML workflows.
  • Leverage MLflow or other MLOps tools to manage model lifecycle tracking, reproducibility, and deployment.
  • Create and manage robust CI/CD pipelines tailored for ML use cases

Infrastructure & Monitoring

  • Deploy containerised services using Docker and Kubernetes, optimised for cloud deployment (Azure preferred).
  • Implement model and pipeline monitoring using tools such as Prometheus, Grafana, or Datadog, ensuring performance and observability.
  • Collaborate with DevOps to maintain and improve infrastructure scalability, reliability, and cost-efficiency.
  • Design, build and maintain internal ML tools to streamline model development, training, deployment and monitoring

Collaboration & Innovation

  • Work closely with data scientists to productionise prototypes into scalable systems.
  • Participate in architectural decisions for LLMOps and NLP-driven components of the platform.
  • Stay engaged with the latest developments in model orchestration, LLMOps, and cloud-native ML infrastructure.
  • Ensure the security of systems, data, and people by following company security policies, reporting vulnerabilities, and maintaining a secure work environment across all settings.

Why should you apply?

  • This is a fantastic opportunity to work in a growing FinTech environment with excellent career progression available.
  • With a global client base the role offers an opportunity to experience a wide variety of digital transformation projects – each with their own unique requirements and opportunities.
  • We take career progression seriously, with investment into the WDX Academy for new and existing employee learning and development.
  • You will have the flexibility to work from home, in the office or remotely.

Who is best suited to this role?

  • 2–3 years of experience in ML engineering or MLOps / LLMOps.
  • Strong Python programming skills for data manipulation and pipeline development.
  • Hands-on experience with containerisation using Docker and Kubernetes.
  • Proven experience deploying ML models into production, ideally in real-time or SaaS environments.
  • Familiarity with Airflow, MLflow, and modern MLOps/LLMOps tooling.
  • Practical experience with cloud platforms, preferably Microsoft Azure.
  • Strong problem-solving skills, attention to detail, and the willingness to get things done.
  • Excellent collaboration and communication skills; comfortable working across technical and product teams.
  • Preferred Strengths
  • Experience with LLMOps frameworks (e.g., LangChain, vector databases, retrieval-augmented generation).
  • Experience with ML-specific CI/CD pipelines and model governance best practices.
  • Familiarity with monitoring and observability tools like Jaeger, Prometheus, Grafana, or Datadog.
  • Experience working in startups or fast-paced teams, balancing rapid iteration with production-grade reliability.

We believe we offer career defining opportunities and are on a journey that will build awesome memories in a diverse and inclusive culture. If you are looking for more than just a job, get in touch.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why the UK Could Be the World’s Next AI Jobs Hub

Artificial Intelligence (AI) has rapidly moved from research labs into boardrooms, classrooms, hospitals, and homes. It is already reshaping economies and transforming industries at a scale comparable to the industrial revolution or the rise of the internet. Around the world, countries are competing fiercely to lead in AI innovation and reap its economic, social, and strategic benefits. The United Kingdom is uniquely positioned in this race. With a rich heritage in computing, world-class universities, forward-thinking government policy, and a growing ecosystem of startups and enterprises, the UK has many of the elements needed to become the world’s next AI hub. Yet competition is intense, particularly from the United States and China. Success will depend on how effectively the UK can scale its strengths, close its gaps, and seize opportunities in the years ahead. This article explores why the UK could be the world’s next global hub for artificial intelligence, what challenges it must overcome, and what this means for businesses, researchers, and job seekers.

The Best Free Tools & Platforms to Practise AI Skills in 2025/26

Artificial Intelligence (AI) is one of the fastest-growing career fields in the UK and worldwide. Whether you are a student exploring AI for the first time, a graduate looking to build your portfolio, or an experienced professional upskilling for career growth, having access to free tools and platforms to practise AI skills can make a huge difference. In this comprehensive guide, we’ll explore the best free resources available in 2025, covering AI coding platforms, datasets, cloud tools, no-code AI platforms, online communities, and learning hubs. These tools allow you to practise everything from machine learning models and natural language processing (NLP) to computer vision, reinforcement learning, and large language model (LLM) fine-tuning—without needing a huge budget. By the end of this article, you’ll have a clear roadmap of where to start practising your AI skills for free, how to build real-world projects, and which platforms can help you land your next AI job.

Top 10 Skills in Artificial Intelligence According to LinkedIn & Indeed Job Postings

Artificial intelligence is no longer a niche field reserved for research labs or tech giants—it has become a cornerstone of business strategy across the UK. From finance and healthcare to manufacturing and retail, employers are rapidly expanding their AI teams and competing for talent. But here’s the challenge: AI is evolving so quickly that the skills in demand today may look different from those of just a few years ago. Whether you’re a graduate looking to enter the industry, a mid-career professional pivoting into AI, or an experienced engineer wanting to stay ahead, it’s essential to know what employers are actually asking for in their job ads. That’s where platforms like LinkedIn and Indeed provide valuable insight. By analysing thousands of job postings across the UK, they reveal the most frequently requested skills and emerging trends. This article distils those findings into the Top 10 AI skills employers are prioritising in 2025—and shows you how to present them effectively on your CV, in interviews, and in your portfolio.