National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Engineer - Fintech – Remote

Wealth Dynamix
London
1 month ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer (W/M/D)

Machine Learning Developer / Engineer

Staff Machine Learning Engineer (London)

Artificial Intelligence And Machine Learning Engineer

Machine Learning Engineer - Fintech – Remote

Machine Learning Engineerwanted as our team is growing fast!

Calling highly motivated, bright candidates who are looking for a career at an exciting award winning FinTech firm!

Company: Wealth Dynamix

Role: Machine Learning Engineer

Location: London

Start Date: June / July 2025

Would you like to join one of the fastest growing FinTech firms in Europe? We are looking for an analytical self-starter with experience in deploying AI ? ML models in the capacity of a Data Engineer. If you are passionate about digital transformation and keen to learn about delivering the market leading Client Lifecycle Managing solution to the Wealth Management industry, apply now!

Who are we?

  • Wealth Dynamix helps to relieve the burden of client management issues for wealth management and private banking firms with innovative technology.
  • We provide Relationship Managers with a multi-award winning digital Client Lifecycle Management (CLM) platform, offering 360-degree access to their client.
  • We are a global leader in end-to-end CLM, Wealth Dynamix has offices and clients in three continents with headquarters in the UK.

What is the role?

This role is geared toward building internal ML tooling capabilities and bringing LLM/NLP-based features into production, ensuring they are scalable, reliable, and tightly integrated within our on premise and SaaS platform.

This is a deployment-first role, for someone who excels at data and model pipeline engineering, thrives in a collaborative cross-functional team, and wants to grow while gaining exposure to innovative tooling in the LLM and MLOps space

Main Purpose of Role

LLM/NLP Production Engineering

  • Build and maintain scalable, production-ready pipelines for Natural Language Processing and Large Language Model (LLM) features.
  • Package and deploy inference services for ML models and prompt-based LLM workflows using containerised services.
  • Ensure reliable model integration across real-time APIs and batch processing systems.

Pipeline Automation & MLOps

  • Use Apache Airflow (or similar) to orchestrate ETL and ML workflows.
  • Leverage MLflow or other MLOps tools to manage model lifecycle tracking, reproducibility, and deployment.
  • Create and manage robust CI/CD pipelines tailored for ML use cases

Infrastructure & Monitoring

  • Deploy containerised services using Docker and Kubernetes, optimised for cloud deployment (Azure preferred).
  • Implement model and pipeline monitoring using tools such as Prometheus, Grafana, or Datadog, ensuring performance and observability.
  • Collaborate with DevOps to maintain and improve infrastructure scalability, reliability, and cost-efficiency.
  • Design, build and maintain internal ML tools to streamline model development, training, deployment and monitoring

Collaboration & Innovation

  • Work closely with data scientists to productionise prototypes into scalable systems.
  • Participate in architectural decisions for LLMOps and NLP-driven components of the platform.
  • Stay engaged with the latest developments in model orchestration, LLMOps, and cloud-native ML infrastructure.
  • Ensure the security of systems, data, and people by following company security policies, reporting vulnerabilities, and maintaining a secure work environment across all settings.

Why should you apply?

  • This is a fantastic opportunity to work in a growing FinTech environment with excellent career progression available.
  • With a global client base the role offers an opportunity to experience a wide variety of digital transformation projects – each with their own unique requirements and opportunities.
  • We take career progression seriously, with investment into the WDX Academy for new and existing employee learning and development.
  • You will have the flexibility to work from home, in the office or remotely.

Who is best suited to this role?

  • 2–3 years of experience in ML engineering or MLOps / LLMOps.
  • Strong Python programming skills for data manipulation and pipeline development.
  • Hands-on experience with containerisation using Docker and Kubernetes.
  • Proven experience deploying ML models into production, ideally in real-time or SaaS environments.
  • Familiarity with Airflow, MLflow, and modern MLOps/LLMOps tooling.
  • Practical experience with cloud platforms, preferably Microsoft Azure.
  • Strong problem-solving skills, attention to detail, and the willingness to get things done.
  • Excellent collaboration and communication skills; comfortable working across technical and product teams.
  • Preferred Strengths
  • Experience with LLMOps frameworks (e.g., LangChain, vector databases, retrieval-augmented generation).
  • Experience with ML-specific CI/CD pipelines and model governance best practices.
  • Familiarity with monitoring and observability tools like Jaeger, Prometheus, Grafana, or Datadog.
  • Experience working in startups or fast-paced teams, balancing rapid iteration with production-grade reliability.

We believe we offer career defining opportunities and are on a journey that will build awesome memories in a diverse and inclusive culture. If you are looking for more than just a job, get in touch.

#J-18808-Ljbffr

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present AI Models to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

In today’s competitive job market, AI professionals are expected to do more than just build brilliant algorithms—they must also explain them clearly to stakeholders who may have no technical background. Whether you're applying for a role as a machine learning engineer, data scientist, or AI consultant, your ability to articulate complex models in simple terms is fast becoming one of the most valued soft skills in interviews and on the job. This guide will help you master the art of public speaking for AI roles, offering tips on structuring presentations, designing effective slides, and using storytelling to make your work resonate with any audience.

AI Jobs UK 2025: 50 Companies Hiring Now

Bookmark this guide – we refresh it every quarter so you always know who’s really scaling their artificial‑intelligence teams. Artificial intelligence hiring has roared back in 2025. The UK’s boosted National AI Strategy funding, record‑breaking private investment (£18.1 billion so far) & a fresh wave of generative‑AI product launches mean employers are jockeying for data scientists, ML engineers, MLOps specialists, AI product managers, prompt engineers & applied researchers. Below are 50 organisations that have advertised UK‑based AI vacancies in the past eight weeks or formally announced growth plans. They’re grouped into five easy‑scan categories so you can jump straight to the kind of employer – & culture – that suits you. For each company you’ll find: Main UK hub Example live or recent vacancy Why it’s worth a look (tech stack, culture, mission) Use the internal links to browse current vacancies on ArtificialIntelligenceJobs.co.uk – or set up a free job alert so fresh roles land in your inbox.

Return-to-Work Pathways: Relaunch Your AI Career with Returnships, Flexible & Hybrid Roles

Stepping back into the workplace after a career break can feel like embarking on a whole new journey—especially in a cutting-edge field such as artificial intelligence (AI). For parents and carers, the challenge isn’t just refreshing your technical know-how but also securing a role that respects your family commitments. Fortunately, the UK’s tech sector now boasts a wealth of return-to-work programmes—from formal returnships to flexible and hybrid opportunities. These pathways are designed to bridge the gap, equipping you with refreshed skills, confidence and a supportive network. In this comprehensive guide, you’ll discover how to: Understand the booming demand for AI talent in the UK Leverage transferable skills honed during your break Overcome common re-entry challenges Build your AI skillset with targeted training Tap into returnship and re-entry programmes Find flexible, hybrid and full-time AI roles that suit your lifestyle Balance professional growth with caring responsibilities Master applications, interviews and networking Whether you’re returning after maternity leave, eldercare duties or another life chapter, this article will equip you with practical steps, resources and insider tips.