Machine Learning Engineer

Noir Consulting
Yarnton
3 months ago
Create job alert

Machine Learning Engineer


Machine Learning Engineer – AI for Advanced Materials – Oxford / Remote (UK)

(Tech stack: Python, PyTorch, TensorFlow, Scikit-learn, MLflow, Airflow, Docker, Kubernetes, AWS, Azure, GCP, Pandas, NumPy, SciPy, CI/CD, MLOps, Data Visualization, Bayesian Modelling, Probabilistic Programming, Terraform)

We’re looking for a Machine Learning Engineer to join a rapidly scaling deep-tech company that’s reinventing how the world designs and makes advanced materials. By combining artificial intelligence, physics-based simulation, and cutting-edge 3D printing, our client is transforming the way metal components are conceived, tested, and produced – enabling breakthroughs in aerospace, energy, and beyond.

This is a rare chance to apply your ML expertise to problems that have a tangible, physical impact – from inventing new alloys to optimising complex manufacturing processes. You’ll collaborate with leading data scientists, engineers, and materials researchers to build models that drive real-world innovation. Expect to design, validate, and deploy state-of-the-art ML pipelines that move seamlessly from concept to production.

If you thrive in fast-paced, intellectually charged environments where every model could change an industry, you’ll fit right in.

Our client is seeking Machine Learning Engineers with experience in some or all of the following (full training provided to fill any gaps): Python, PyTorch, TensorFlow, Scikit-learn, MLflow, Airflow, Docker, Kubernetes, Pandas, NumPy, SciPy, CI/CD, Data Visualization, Bayesian Modelling, Probabilistic Programming, Terraform, Azure, AWS, GCP, Git, and Agile methodologies.

Join a team that’s fusing AI, science, and engineering to push the boundaries of what’s possible.


All Machine Learning Engineer positions come with the following benefits:

* Competitive salary with annual performance-based bonuses


* Equity options – share in the company’s long-term success


* Private healthcare and comprehensive wellbeing package


* Generous pension scheme (up to 8%)


* Dedicated R&D time to explore new technologies and research ideas


* Annual training & conference allowance of £5,000 for personal development


* Flexible and hybrid working – work where you’re most effective


* Opportunities for international collaboration with teams in Europe, Asia, and the US


* 25 days holiday plus your birthday off and extra days for long service


* Regular team offsites, guest talks, and hack weeks to spark innovation


* An open, supportive culture that values curiosity, creativity, and deep technical mastery

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.