Machine Learning Engineer

Faculty
City of London
1 month ago
Create job alert
About Faculty

At Faculty, we transform organisational performance through safe, impactful and human-centric AI.


With more than a decade of experience, we provide over 350 global customers with software, bespoke AI consultancy, and Fellows from our award winning Fellowship programme.


Our expert team brings together leaders from across government, academia and global tech giants to solve the biggest challenges in applied AI.


Should you join us, you’ll have the chance to work with, and learn from, some of the brilliant minds who are bringing Frontier AI to the frontlines of the world.


Bringing medicine to patients is complex, expensive and high‑risk. Faculty’s Life Science team is concentrated on building AI solutions which optimise the research and commercialisation of life‑changing therapies.


We partner with major pharma firms, academic research centres and MedTech start‑ups to design and deliver solutions which address critical healthcare challenges, and help to democratise health for all.


About the role

Join us as a Machine Learning Engineer to deliver bespoke, impactful AI solutions for our diverse clients.


You will be instrumental in bringing machine learning out of the lab and into the real world, contributing to scalable software architecture and defining best practices. Working with clients, and cross‑functional teams, you’ll ensure technical feasibility and timely delivery of high‑quality, production‑grade ML systems.


What you’ll be doing:

  • Building and deploying production‑grade ML software, tools, and infrastructure.
  • Creating reusable, scalable solutions that accelerate the delivery of ML systems.
  • Collaborating with engineers, data scientists, and commercial leads to solve critical client challenges.
  • Leading technical scoping and architectural decisions to ensure project feasibility and impact.
  • Defining and implementing Faculty’s standards for deploying machine learning at scale.
  • Acting as a technical advisor to customers and partners, translating complex ML concepts for stakeholders.

Who we’re looking for:

  • You understand the full machine learning lifecycle and have experience operationalising models built with frameworks like Scikit‑learn, TensorFlow, or PyTorch.
  • You possess strong Python skills and solid experience in software engineering best practices.
  • You bring hands‑on experience with cloud platforms and infrastructure (e.g., AWS, Azure, GCP), including architecture and security.
  • You’ve worked with container and orchestration tools such as Docker & Kubernetes to build and manage applications at scale.
  • You are comfortable with core ML concepts, including probability, statistics, and common learning techniques.
  • You’re an excellent communicator, able to guide technical teams and confidently advise non‑technical stakeholders.
  • You thrive in a fast‑paced environment, and enjoy the autonomy to own scope, solve and delivery solutions.

What we can offer you:

The Faculty team is diverse and distinctive, and we all come from different personal, professional and organisational backgrounds. We all have one thing in common: we are driven by a deep intellectual curiosity that powers us forward each day.


Faculty is the professional challenge of a lifetime. You’ll be surrounded by an impressive group of brilliant minds working to achieve our collective goals. Our consultants, product developers, business development specialists, operations professionals and more all bring something unique to Faculty, and you’ll learn something new from everyone you meet.


#J-18808-Ljbffr

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.