Machine Learning Engineer

Elanco Tiergesundheit AG
Hook
4 weeks ago
Create job alert

As a global leader in animal health, we are dedicated to innovation and delivering products and services to prevent and treat disease in farm animals and pets. **At Elanco, we are driven by our vision of Food and Companionship Enriching Life and our purpose – all to Go Beyond for Animals, Customers, Society and Our People.***Your role:**As a Machine Learning (ML) Engineer at Elanco, you will be a key member of our engineering team, specialising in the end-to-end lifecycle of custom and third-party (including open source) machine learning models. This role is focused on the practical application of machine learning, requiring a strong blend of software engineering discipline and deep ML expertise to design, build, and deploy models that deliver real-world value.Your Responsibilities: Cross-Functional Collaboration: Work closely with data scientists, product managers, and software engineers to define requirements, integrate models into applications, and deliver impactful features. What You Need to Succeed (minimum qualifications): Advanced proficiency in Python and deep experience with core ML/data science libraries (e.g., PyTorch, TensorFlow, scikit-learn, pandas, NumPy).ML Model Deployment: Proven, hands-on experience deploying machine learning models into a production environment. Experience with MLOps tools and frameworks and containerisation technologies (Docker, Kubernetes).Cloud Platform Proficiency: Practical experience with Public Cloud, specifically Microsoft Azure and Google Cloud Platform (GCP) and their ML services (e.g., Azure ML, Vertex AI). Proven experience with relevant DevSecOps concepts and tooling, including Continuous Integration/Continuous Delivery (CI/CD), Git SCM, Containerisation (Docker, Kubernetes), Infrastructure-as-Code (HashiCorp Terraform).Machine Learning Theory: Solid understanding of the theoretical foundations of machine learning algorithms, including deep learning, NLP, and classical ML. Problem-Solving: A pragmatic and results-oriented approach to problem-solving, with the ability to translate ambiguous requirements into concrete technical solutions. Industry Experience: A broad understanding of life science, covering the business model, regulatory/compliance requirements, risks and rewards. An ability to identify and execute against opportunities within machine learning that directly support life science outcomes.Communication: Excellent communication skills, capable of articulating complex technical decisions and outcomes to both technical and non-technical stakeholders. Location: Hook, UK - Hybrid Work EnvironmentIf you think you might be a good fit for a role but don't necessarily meet every requirement, we encourage you to apply. You may be the right candidate for this role or other roles!*Elanco Animal Health Incorporated (NYSE: ELAN) is a global leader in animal health dedicated to innovating and delivering products and services to prevent and treat disease in farm animals and pets, creating value for farmers, pet owners, veterinarians, stakeholders, and society as a whole. With nearly 70 years of animal health heritage, we are committed to helping our customers improve the health of animals in their care, while also making a meaningful impact on our local and global communities. At Elanco, we are driven by our vision of Food and Companionship Enriching life and our Elanco Healthy Purpose CSR framework – all to advance the health of animals, people and the planet. Learn more at .
#J-18808-Ljbffr

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.