Machine Learning Engineer

algo1
City of London
4 days ago
Create job alert

About Us

We are a VC-backed startup focused on hyper-personalisation, currently in stealth. Inspired by the latest in recommender systems, we leverage transformers and graph learning alongside decision-making models to build the most engaging customer experiences for in-store retail.

Our mission is to change retail forever through hyper-personalised experiences that are both simple and beautiful.


About the JobMachine Learning Engineer

We are looking for a Machine Learning Engineer with strong software engineering fundamentals to join our team of domain experts and researchers. You will be responsible for building robust, scalable ML systems that bring our foundation models for retail from prototype to production.

Key Responsibilities

  • Design and build production-grade ML infrastructure, including training pipelines, model serving, and monitoring systems.
  • Collaborate with research engineers to translate experimental models into reliable, maintainable software.
  • Optimise ML systems for performance, scalability, and cost-efficiency in cloud environments (distributed clusters, GPUs).
  • Establish engineering best practices for ML development, including testing, CI/CD, and code review standards.

Progression Timeline

  • Month 1: Onboard to existing ML codebase and infrastructure; identify technical debt and reliability gaps; ship incremental improvements to model serving latency or pipeline robustness.
  • Month 3: Own and deliver a major infrastructure component (e.g., feature store, training orchestration, or model registry); improve system observability with logging, metrics, and alerting.
  • Month 6: Lead the end-to-end productionisation of our foundation model, meeting latency, throughput, and reliability SLAs; mentor teammates on engineering standards and contribute to architectural decisions.

Essential Qualifications

  • 3–5+ years building and maintaining ML systems in production environments
  • BSc or MSc in Computer Science, Software Engineering, or a related field
  • Strong software engineering skills: clean code, testing, debugging, version control, and system design
  • Proficiency in Python with experience in ML frameworks (PyTorch, TensorFlow, or JAX)
  • Hands-on experience with cloud platforms (AWS, GCP, or Azure) and containerisation (Docker, Kubernetes)
  • Solid understanding of ML fundamentals (model training, evaluation, common architectures)

Desired Skills (Bonus Points)

  • Experience with MLOps tooling (MLflow, Kubeflow, Weights & Biases, or similar)
  • Building data pipelines (real-time or batch) using tools like Apache Spark, Kafka, Airflow, or dbt
  • Familiarity with recommender systems, transformers, or graph neural networks
  • Exposure to model optimisation techniques (quantisation, distillation, efficient inference)

What We Offer

  • Opportunity to build technology that will transform millions of shopping experiences.
  • Real ownership and impact in shaping product and company direction.
  • A dynamic, collaborative work environment with cutting-edge ML challenges.
  • Competitive compensation and equity in a rapidly growing company.

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.