National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Engineer - AI for Grid Innovation & Energy Transition (Energy Sector Experience Required)

GE Vernova
Stafford
1 month ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer (SC Cleared)

Machine Learning Engineer | Cambridge | Consulting

Machine Learning Engineer

Machine Learning Engineer

Job Description Summary
GE Vernova is accelerating the path to more reliable, affordable, and sustainable energy, while helping our customers power economies and deliver the electricity that is vital to health, safety, security, and improved quality of life. Are you excited at the opportunity to electrify and decarbonize the world?

We are looking for a passionate, creative, and results-oriented Machine Learning (ML) Engineer with substantial experience in the energy, smart infrastructure, or industrial automation sectors to join our AI & Grid Innovation team. In this role, you will be at the forefront of developing, deploying, and validating cutting-edge AI/ML models designed specifically for grid innovation applications. You will play a key role in building systems to test and verify proof-of-concepts, delivering AI-driven solutions both at the edge and in the cloud.

Reporting to the AI Director within the CTO organization, this position offers the opportunity to work collaboratively with Grid Automation product lines, R&D teams, and other business units to create impactful, sustainable, and inclusive solutions across energy systems, smart infrastructure, and industrial automation. Your expertise in automation, AI, and their integration into these domains will be essential in shaping the company's mission to foster innovation, inclusivity, and progress.

Job Description

Essential Responsibilities:

  • Lead the design, development, and deployment of scalable AI/ML models for grid innovation applications in the energy, smart infrastructure, or industrial automation sectors.
  • Create innovative analytics to optimize grid system performance and product differentiation.
  • Develop AI/ML applications for customer-driven use cases, including predictive maintenance and load forecasting.
  • Validate and verify AI/ML proof-of-concepts in real-world environments, ensuring they meet the diverse needs of our customers.
  • Monitor, maintain, and optimize deployed AI/ML models to continuously enhance their accuracy and performance.
  • Manage the collection, structuring, and analysis of data to enable seamless AI/ML applications.
  • Ensure that models are production-ready and continuously improve in line with emerging needs and technologies.
  • Embrace MLOps principles to streamline the deployment and updating of ML models in production.
  • Collaborate closely with cross-functional teams to identify business challenges and deliver AI-driven solutions that are efficient, equitable, and scalable.
  • Integrate AI/ML solutions effortlessly into grid automation systems, whether in the cloud or at the edge.


Must-Have Requirements:

  • Master's or PhD in Computer Science, Information Technology, Electrical Engineering, or a related field.
  • Proven experience in the energy, smart infrastructure, or industrial automation sectors, with expertise in system protection, automation, monitoring, and diagnostics.
  • Strong foundation in AI/ML techniques, including supervised, unsupervised, and reinforcement learning, deep learning, and large language models (LLMs).
  • Experience with ML frameworks such as TensorFlow, PyTorch, and scikit-learn.
  • Hands-on experience deploying ML models in production environments using MLOps principles.
  • Expertise in relevant AI/ML applications, such as predictive maintenance, load forecasting, or optimization.
  • Proficiency in programming languages such as Python, R, MATLAB, or C++.
  • Familiarity with cloud platforms (AWS, Azure, Google Cloud) and microservices architecture.


Nice-to-Have Requirements:

  • Experience with data modeling, containerization (Docker, Kubernetes), and distributed computing (Spark, Scala).
  • Familiarity with GraphDB, MongoDB, SQL/NoSQL, and other DBMS technologies.
  • Understanding of system automation, protection, and diagnostics in relevant sectors.
  • Experience with deep learning algorithms, reinforcement learning, NLP, and computer vision in applicable domains.
  • Excellent communication, organizational, and problem-solving skills, with a strong emphasis on teamwork, collaboration, and fostering inclusive environments.


At GE Vernova - Grid Automation, you will have the opportunity to work on cutting-edge projects that shape the future of energy. We offer a collaborative environment where your expertise will be valued, and your contributions will make a tangible impact. Join us and be part of a team that is driving innovation and excellence in control systems.

AboutGEVGrid Solutions:

At GEV Grid Solutions we are electrifying the world with advanced grid technologies. As leaders in the energy space our goal is to accelerate the transition for a more energy efficient grid to full fill the needs of tomorrow. With a focus on growth and sustainability GE Grid Solutions plays a pivotable role in integrating Renewables onto the grid to drive to carbon neutral. In Grid Solutions we help enable the transition for a greener more reliable Grid. GE Grid Solutions has the most advanced and comprehensive product and solutions portfolio within the energy sector.

Why we come to work:

At GEV, our engineers are always up for the challenge - and we're always driven to find the best solution. Our projects are unique and interesting, and you'll need to bring a solution-focused, positive approach to each one to do your best. Surrounded by committed, loyal colleagues, if you can dare to bring your ingenuity and desire to make an impact, you'll be exposed to game-changing, diverse projects that truly allow you to play your part in the energy transition.

What we offer:

A key role in a dynamic, international working environment with a large degree of flexibility of work agreements

Competitive benefits, and great development opportunities - including private health insurance.

Additional Information

Relocation Assistance Provided:No

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 AI Recruitment Agencies in the UK You Should Know (2025 Job‑Seeker Guide)

Generative‑AI hype has translated into real hiring: Lightcast recorded +57 % year‑on‑year growth in UK adverts mentioning “machine learning”, “LLM” or “gen‑AI” during Q1 2025. Yet supply still lags. Roughly 18,000 core AI professionals work in the UK, but monthly live vacancies hover around 1,400–1,600. That mismatch makes specialist recruiters invaluable—opening stealth vacancies, advising on salary bands and fast‑tracking interview loops. But many tech agencies sprinkle “AI” on their website without an active desk. To save you time, we vetted 50 + consultancies and kept only those with: A registered UK head office (verified via Companies House). A named AI/Machine‑Learning or Data practice.

AI Jobs Skills Radar 2026: Emerging Frameworks, Languages & Tools to Learn Now

As the UK’s AI sector accelerates towards a £1 trillion tech economy, the job landscape is rapidly evolving. Whether you’re an aspiring AI engineer, a machine learning specialist, or a data-driven software developer, staying ahead of the curve means more than just brushing up on Python. You’ll need to master a new generation of frameworks, languages, and tools shaping the future of artificial intelligence. Welcome to the AI Jobs Skills Radar 2026—your definitive guide to the emerging AI tech stack that employers will be looking for in the next 12–24 months. Updated annually for accuracy and relevance, this guide breaks down the top tools, frameworks, platforms, and programming languages powering the UK’s most in-demand AI careers.

How to Find Hidden AI Jobs in the UK Using Professional Bodies like BCS, IET & the Turing Society

Stop Scrolling Job Boards and Start Tapping the Real AI Market Every week a new headline announces millions of pounds flowing into artificial-intelligence research, defence initiatives, or health-tech pilots. Read the news and you could be forgiven for thinking that AI vacancies must be everywhere—just grab your laptop, open LinkedIn, and pick a role. Yet anyone who has hunted seriously for an AI job in the United Kingdom knows the truth is messier. A large percentage of worthwhile AI positions—especially specialist or senior posts—never appear on public boards. They emerge inside university–industry consortia, defence labs, NHS data-science teams, climate-tech start-ups, and venture studios. Most are filled through referral or conversation long before a recruiter drafts a formal advert. If you wait for a vacancy link, you are already at the back of the queue. The surest way to beat that dynamic is to embed yourself in the professional bodies and grassroots communities where the work is conceived. The UK has a dense network of such organisations: the Chartered Institute for IT (BCS); the Institution of Engineering and Technology (IET) with its Artificial Intelligence Technical Network; the Alan Turing Institute and its student-driven Turing Society; the Royal Statistical Society (RSS); the Institution of Mechanical Engineers (IMechE) and its Mechatronics, Informatics & Control Group; public-funding engines like UK Research and Innovation (UKRI); and an ecosystem of Slack channels and Meetup groups that trade genuine, timely intel. This article is a practical, step-by-step guide to using those networks. You will learn: Why professional bodies matter more than algorithmic job boards Exactly which special-interest groups (SIGs) and technical networks to join How to turn CPD events into informal interviews How to monitor grant databases so you hear about posts months before they exist Concrete scripts, portfolio tactics, and outreach rhythms that convert visibility into offers Follow the playbook and you move from passive applicant to insider—the colleague who hears about a role before it is written down.