Machine Learning Engineer - Ads Retrieval

reddit
London
1 year ago
Create job alert

Reddit is a community of communities. It’s built on shared interests, passion, and trust and is home to the most open and authentic conversations on the internet. Every day, Reddit users submit, vote, and comment on the topics they care most about. With ,+ active communities and approximately M+ daily active unique visitors, Reddit is one of the internet’s largest sources of information. For more information, visit .

Ads Retrieval team’s mission is to identify the business opportunities, provide ML models and data driven solutions on candidate sourcing, recommendation, early ranking and filtering in Ads upper funnel. The team works on:

Build and iterate on candidate sourcing and early ranking Machine Learning models and algorithms to find the most relevant, engaging and diversified ads candidates for global optimization and various product use cases.  Design and establish a large scale candidate indexing system to enable efficient candidate retrieval at a scale of millions to billions, which powers ads recommendation and ranking with good balance between quality and computation efficiency. 

As a machine learning engineer in the ads retrieval team, you will research, formulate and execute on our mission to build end-to-end ML solutions and deliver the right ad to the right user under the right context with data and ML driven solutions. 

Your Responsibilities :

Building ads retrieval and early ranking system for critical ML tasks with advanced industrial level techniques Research, implement, test, and launch new model architectures including information retrieval, ANN, recommendation system, deep neural networks within high dimensional information system Work on large scale data systems, backend services and product integration Collaborate closely with multiple stakeholders cross product, engineering, research and marketing 

Who You Might Be:

+ years of experience with applied machine learning models with Tensorflow/Pytorch with large-scale ML systems  + years of end-to-end experience of training, evaluating, testing, and deploying machine learning models Proficiency with programming languages (Java, Python, Golang, C++, or similar) and statistical analysis. Experience of orchestrating complicated data pipelines and system engineering on large-scale dataset Prior experience with information retrieval and recommendation system Ads domain knowledge on product and ML solutions is a plus

Benefits:

Pension Scheme Private Medical and Dental Scheme Life Assurance, Income Protection Workspace benefit for your home office  Personal & Professional development funds Family Planning Support  Commuter Benefits Flexible Vacation & Reddit Global Days Off

Join us at Reddit, and help us build a community that is inclusive and empowering for everyone.

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer - London

Machine Learning Engineer/Researcher

Machine Learning Engineer/Researcher

Machine Learning Engineer

Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.

AI Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we head into 2026, the AI hiring market in the UK is going through one of its biggest shake-ups yet. Economic conditions are still tight, some employers are cutting headcount, & AI itself is automating whole chunks of work. At the same time, demand for strong AI talent is still rising, salaries for in-demand skills remain high, & new roles are emerging around AI safety, governance & automation. Whether you are an AI job seeker planning your next move or a recruiter trying to build teams in a volatile market, understanding the key AI hiring trends for 2026 will help you stay ahead. This guide breaks down the most important trends to watch, what they mean in practice, & how to adapt – with practical actions for both candidates & hiring teams.