Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning Engineer

JR United Kingdom
Slough
2 weeks ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Social network you want to login/join with:

Are you a Junior Machine Learning Engineer eager to turn messy, complex data into real-world intelligence?

We’re looking for a curious and motivated Junior ML Engineer to join a hybrid-working team building cutting-edge data intelligence tools for the financial sector. You’ll spend part of your time collaborating in person with engineers and data scientists, and part working remotely — giving you the best of both worlds.

You’ll be working on a platform that transforms unstructured private market data into actionable insights — learning how to design ML pipelines, fine-tune NLP models, and deploy solutions that really work in production.

In this role, you’ll help train, test, and optimise models that can read, understand, and structure complex documents at scale. From data preprocessing to model evaluation, you’ll gain hands-on experience across the machine learning lifecycle — while contributing to a product used by real-world clients.

What’s in it for you?

? AI That Matters – Work on models that make sense of unstructured financial documents and turn them into structured insights.

Hands-On ML Experience – Learn the full ML workflow — from cleaning data to deploying models and monitoring them in production.

? Mentorship & Growth – Work closely with experienced ML engineers who will guide your technical and career development.

? Collaborative Environment – Pair with engineers, data scientists, and domain experts to solve real-world challenges.

? Hybrid Flexibility – Balance focused remote work with in-person collaboration at our office.

What We’re Looking For:

  • 0–2 years of experience in machine learning, applied AI, or data science (personal projects and internships count!)
  • Solid Python skills and familiarity with libraries like PyTorch, TensorFlow, or Hugging Face Transformers
  • Understanding of basic ML concepts and data preprocessing techniques
  • Interest in NLP, unstructured data, and information extraction
  • Eagerness to learn, take feedback, and contribute to a collaborative team

Nice to Have:

  • Experience with SQL/NoSQL databases
  • Familiarity with MLOps tools (Docker, Git, CI/CD)
  • Exposure to vector databases or semantic search
  • Knowledge of financial datasets or document processing workflows

If you’re excited to grow your skills in machine learning and work on technology that helps people understand complex data — we’d love to hear from you.

Apply now and start your journey building the future of data-driven insight.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.