Machine Learning Engineer

Block MB
London
2 days ago
Create job alert

My client is looking for an experienced ML Infrastructure Engineer to support the deployment, optimisation and scaling of advanced machine learning models in production environments. This role sits at the intersection of research and engineering, focused on ensuring models are reliably transitioned from experimentation through to large-scale deployment.

You will work closely with research and platform teams to build and maintain high-performance inference systems, improve deployment processes and help drive infrastructure improvements that enable faster model iteration and release cycles.

This is a strong opportunity to work on technically complex challenges within a fast-moving and highly collaborative environment.


The Role

  • Productionise machine learning models from research through validation, staging and live deployment
  • Build, maintain and optimise scalable inference infrastructure supporting high-throughput, low-latency workloads
  • Improve performance and reliability across GPU-based environments
  • Design and implement model serving and deployment workflows
  • Develop monitoring and observability tools to track system performance, errors and utilisation
  • Support data preparation and model integration as part of the wider development lifecycle
  • Collaborate with research, engineering and infrastructure teams to improve deployment efficiency and platform scalability
  • Evaluate and integrate third-party infrastructure and inference tooling where appropriate


Requirements

  • Proven experience deploying and maintaining ML inference systems in production environments
  • Strong programming experience in Python and familiarity with modern machine learning frameworks
  • Experience working with containerisation and orchestration technologies such as Kubernetes or similar
  • Exposure to distributed systems and cloud-based infrastructure
  • Experience supporting GPU workloads and performance optimisation
  • Strong troubleshooting skills across performance, scaling and system reliability
  • Comfortable working cross-functionally within research-led environments
  • Ability to operate in fast-paced teams with evolving technical priorities


Nice to Have

  • Experience building or improving model serving infrastructure
  • Understanding of distributed training or inference techniques
  • Experience debugging low-level performance or hardware-related issues
  • Exposure to real-time or latency-sensitive ML applications

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer - Satellite

Machine Learning Engineer Space & Satellite

Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.