Machine Learning Engineer

Kraken
Manchester
2 months ago
Create job alert
Machine Learning Engineer

1 day ago Be among the first 25 applicants


Kraken is the operating system for utilities of the future. Built in-house at Octopus Energy, we took them to become the biggest supplier in the UK, and now we power energy companies and utilities around the globe – in 10 countries and counting, licensing software to giants like Origin Energy in Australia and Tokyo Gas in Japan. We’re on a mission to accelerate the renewable transition, and bring affordable green energy to the world.


We’ve reinvented energy products with smart, data‑driven tariffs to balance customer demand with renewable generation, and Kraken’s platform controls more than half of the grid‑scale batteries in the UK. We’re driving the uptake of low‑carbon technologies like solar panels and heat pumps via our software for engineers in the field. Our platform allows our energy specialists to be the most productive in the industry, with our suite of AI tools making us pioneers in using ML and AI to make agents’ lives easier and customers happier. We do it by hiring clever, curious, and self-driven people, enabling them with modern tools and infrastructure and giving them lots of autonomy.


Our ML team consists of ML, front‑end and back‑end engineers, so that we can rapidly prototype and get innovative tools in use at breakneck speed. We’ve had great success in using AI to bring better service to customers, and we want to bring that success to the whole business. You’ll be part of a small expert team working on the most pressing problems for the business, whether it’s internal AI tooling to make our developers twice as productive, or automating processes to cut months off migration times for new clients. You’ll work across the whole product lifecycle: identifying uses of new technologies via exploration, working closely with teams around the business to validate that your ideas will bring value, and rapidly prototyping. The work you do will define the pattern for AI success at the company.


What you’ll do

  • Work with a high‑performance team of LLM, MLOps, backend and front‑end engineers
  • Tackle the biggest problems facing the company, giving a wide experience across the business, with the freedom to define novel approaches
  • Help LLMs understand and interact with the millions of lines of code that run Kraken, leveraging cutting‑edge techniques such as GraphRAG, agentic workflows, finetuning, and reinforcement learning
  • Use classic ML and NLP techniques to complement and improve LLM systems
  • Act as a centre of excellence for the whole business in AI, consulting other teams on LLM use and lifting the quality of products across the organisation
  • Be on the forefront of understanding AI advancements and their technical implications for the team and business

What you’ll need

  • Curious and self‑driven – in a field that changes so quickly, you must have the initiative to make decisions yourself and find solutions to novel problems without extensive help
  • 1+ year experience with LLMs in production beyond POC and a deep technical understanding of diverse technologies and techniques to adapt LLMs to domains (e.g. advanced RAG techniques, tool calling, finetuning and RL). Interest in cutting‑edge AI systems in software engineering, such as AI software copilots or autonomous engineering bots, is a particular plus
  • 3+ years experience of traditional ML techniques, including training and deploying non‑LLM ML models, and ongoing monitoring of production models with feedback mechanisms to improve
  • A keen interest in Gen‑AI and classic ML, understanding of emerging trends and research, and proven experience aligning and applying this to real‑world objectives

It would be great if you had

  • Experience working with large codebases and collaborating with multiple engineering teams in large companies
  • Experience in diverse LLM deployment methods (e.g. hosted finetuned models via services like Bedrock, and running directly via engines like vLLM)

Additional information

Kraken is a certified Great Place to Work in France, Germany, Spain, Japan and Australia. In the UK we are one of the best workplaces on Glassdoor with a score of 4.7. Check out our Welcome to the Jungle site (FR/EN) to learn more about our teams and culture.


Are you ready for a career with us? We want to ensure you have all the tools and environment you need to unleash your potential. If you have any specific accommodations or a unique preference, please contact us at and we’ll do what we can to customise your interview process for comfort and maximum magic!


Studies have shown that some groups of people, like women, are less likely to apply to a role unless they meet 100% of the job requirements. Whoever you are, if you like one of our jobs, we encourage you to apply as you might just be the candidate we hire. Across Kraken, we’re looking for genuinely decent people who are honest and empathetic. Our people are our strongest asset and the unique skills and perspectives people bring to the team are the driving force of our success. As an equal‑opportunity employer, we do not discriminate on the basis of any protected attribute. We consider all applicants without regard to race, colour, religion, national origin, age, sex, gender identity or expression, sexual orientation, marital or veteran status, disability, or any other legally protected status. U.S. based candidates can learn more about their EEO rights here.


Our Applicant and Candidate Privacy Notice and Artificial Intelligence (AI) Notice, Website Privacy Notice and Cookie Notice govern the collection and use of your personal data in connection with your application and use of our website. These policies explain how we handle your data and outline your rights under applicable laws, including, but not limited to, the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA). Depending on your location, you may have the right to access, correct, delete or object to processing, or withdraw consent. By applying, you acknowledge that you’ve read, understood and consent to these terms.


We may use artificial intelligence (AI) tools to support parts of the hiring process, such as reviewing applications, analysing resumes, or assessing responses. These tools assist our recruitment team but do not replace human judgment. Final hiring decisions are ultimately made by humans. If you would like more information about how your data is processed, please contact us.


#J-18808-Ljbffr

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.