Machine Learning Engineer

Opus Recruitment Solutions
Nottingham
11 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Position Overview:

I am working with a client who is seeking a talented Senior Machine Learning Engineer with expertise in Generative AI to join their dynamic team. This role involves designing, developing, and implementing advanced generative models specifically for healthcare applications. As a senior engineer, you will lead the creation of innovative AI solutions, optimise model performance, and collaborate closely with various teams.


Key Responsibilities:

  • Lead experimentation and benchmarking efforts to assess model performance and robustness.
  • Utilize Bayesian Optimization, Reinforcement Learning, or Meta-Learning techniques to improve generative models.
  • Enhance deep learning architectures to boost efficiency, scalability, and readiness for deployment.
  • Innovate and implement cutting-edge generative models such as Diffusion Models, GANs, VAEs, and Transformers.
  • Collaborate with software engineers, researchers, and product managers to integrate models into production environments.
  • Partner with the CTO to shape the AI team's research strategy.
  • Uphold best practices in MLOps, including version control, CI/CD pipelines, and model monitoring.


Qualifications:

  • Proficiency in deep learning frameworks such as PyTorch, TensorFlow, and JAX.
  • Over 2 years of experience in machine learning, with a minimum of 2 years dedicated to generative AI.
  • Understanding of tokenization, embedding techniques, and multi-modal generative models.
  • Strong grasp of probabilistic models, variational inference, and generative modelling techniques.
  • Experience with data pipelines, feature engineering, and managing large-scale datasets.
  • Knowledge of LLMs (with less emphasis), Stable Diffusion, GANs, VAEs, and self-supervised learning paradigms.
  • Excellent problem-solving abilities, with a history of publishing research or contributing to open-source projects.
  • Experience in deploying models on cloud platforms (AWS, GCP, Azure) and using Kubernetes, Docker, and distributed computing frameworks (Ray, Dask, Spark).

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.