Machine Learning Engineer

Jane Street
London
2 days ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer( Real time Data Science Applications)

Machine Learning Manager

Machine Learning Engineer

Machine Learning Engineer

We’re looking for smart and curious individuals from academia to join our growing team and drive our ML work.

On our Machine Learning team, you'll build the deep learning models that power our trading strategies, supported by our rapidly growing computing cluster with thousands of H100s/200s. Trading poses unusual challenges—extreme latency constraints, large datasets, complex feedback loops and a high level of noise—that force us to search for novel tricks.

Researchers, engineers and traders sit a few feet away from each other and work together to train models, architect systems and run trading strategies. Depending on the day, we might be diving deep into market data, tuning hyperparameters, debugging distributed training performance or studying how our model likes to trade in production.

We’ll rely on your in-depth knowledge of the machine learning ecosystem and understanding of varying approaches to shape decision-making as we continue building the future of ML at Jane Street. You’ll also be involved with hiring new colleagues, attending conferences and teaching techniques to teammates—all of which we consider to be real and impactful parts of the job.

About You

If you’ve never thought about a career in finance, you’re in good company. Many of us were in the same position before working here. If you have a curious mind and a passion for solving interesting problems, we have a feeling you’ll fit right in. There’s no fixed set of skills we are looking for, but you should have:

  • Practical experience working on real-world ML problems
  • Experience building and maintaining training and inference infrastructure, with an understanding of what it takes to move from concept to production
  • A strong mathematical background; good candidates will be excited about things like optimisation theory, regularisation techniques, linear algebra and the like
  • A passion for keeping up with the state-of-the-art, whether that means diving into academic papers, experimenting with the latest hardware or reading the source of a new machine learning package
  • A proven ability to create and maintain an organised research codebase that produces robust, reproducible results while maintaining ease of use
  • Expertise wrangling an ML framework—we're fans of PyTorch, but we'd also love to learn what you know about Jax, TensorFlow or others
  • An inventive approach and the willingness to ask hard questions about whether we're taking the right approaches and using the right tools

Apply for this job

First Name *

Last Name *

Email *

Phone *

Resume/CV *

Accepted file types: pdf, doc, docx, txt, rtf

How did you hear about us? * Select...

Additional information (for source)

Have you interviewed with Jane Street before? * Select...

Pronouns

Are you currently a student? * Select...

Enter your college/university

Major/Field of study

Extra

Why you’re interested in Jane Street
How you heard about us
If you have a job now, why you’re looking for a new one

Year you expect to begin full time employment

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for AI Jobs (With Real GitHub Examples)

In the fast-evolving world of artificial intelligence (AI), an impressive portfolio of projects can act as your passport to landing a sought-after role. Even if you’ve aced interviews in the past, employers in AI and machine learning (ML) are increasingly asking candidates to demonstrate hands-on experience through the projects they’ve built and shared online. This is because practical ability often speaks volumes about your suitability for a role—far more than any exam or certification alone could. In this article, we’ll explore how to build an outstanding AI portfolio that catches the eye of recruiters and hiring managers, including: Why an AI portfolio is crucial for job seekers. How to choose AI projects that align with your target roles. Specific project ideas and real GitHub examples to help you stand out. Best practices for showcasing your work, from writing clear READMEs to using Jupyter notebooks effectively. Tips on structuring your GitHub so that employers can instantly see your value. Moreover, we’ll discuss how you can use your portfolio to connect with top employers in AI, with a handy link to our CV-upload page on Artificial Intelligence Jobs for when you’re ready to apply. By the end, you’ll have a clear roadmap to building a portfolio that will help secure interviews—and the AI job—of your dreams.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.