Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning Engineer

IMC
London
4 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

As a Machine Learning Engineer, you will play a pivotal role in building systems that drive the training and deployment of large-scale ML models across our global operations. You'll collaborate with leading researchers, hardware experts, and software engineers to build robust solutions that maximize the potential of GPU acceleration, distributed computing, and the latest open-source tools. Your work will influence our trading strategies by accelerating experimentation cycles that foster continuous innovation and refinement.

This is a unique opportunity to solve problems at the intersection of advanced machine learning and trading, where your contributions will shape the future of IMC's technology and trading capabilities.

Your Core Responsibilities:

  • Develop large-scale distributed training pipelines to manage datasets and complex models
  • Build and optimize low-latency inference pipelines, ensuring models deliver real-time predictions in production systems
  • Develop libraries to improve the performance of machine learning frameworks
  • Maximize performance in training and inference using GPU hardware and acceleration libraries
  • Design scalable model frameworks capable of handling high-volume trading data and delivering real-time, high-accuracy predictions
  • Collaborate with quantitative researchers to automate ML experiments, hyperparameter tuning, and model retraining
  • Partner with HPC specialists to optimize workflows, improve training speed, and reduce costs
  • Evaluate and roll out third-party tools to enhance model development, training, and inference capabilities
  • Dig into the internals of open-source ML tools to extend their capabilities and improve performance

Your Skills and Experience:

  • 5+ years of experience in machine learning with a focus on training or inference systems
  • Hands-on experience with real-time, low-latency ML pipelines in high-performance environments is a strong plus
  • Strong engineering skills, including Python, CUDA, or C++
  • Knowledge of machine learning frameworks such as PyTorch, TensorFlow, or JAX
  • Proficiency in GPU programming for training and inference acceleration (e.g., CuDNN, TensorRT)
  • Experience with distributed training for scaling ML workloads (e.g., Horovod, NCCL)
  • Exposure to cloud platforms and orchestration tools
  • A track record of contributing to open-source projects in machine learning, data science, or distributed systems is a plus

The Base Salary range for the role is included below. Base salary is only one component of total compensation; all full-time, permanent positions are eligible for a discretionary bonus and benefits, including paid leave and insurance. Please visit Benefits - US | IMC Trading for more comprehensive information.

Salary Range:

$175,000-$250,000 USD

About Us

IMC is a leading global trading firm powered by a cutting-edge research environment and a world-class technology backbone. Since 1989, we've been a stabilizing force in financial markets, providing essential liquidity upon which market participants depend. Across our offices in the US, Europe, and Asia Pacific, our talented quant researchers, engineers, traders, and business operations professionals are united by our uniquely collaborative, high-performance culture, and our commitment to giving back. From entering dynamic new markets to embracing disruptive technologies, and from developing an innovative research environment to diversifying our trading strategies, we dare to continuously innovate and collaborate to succeed.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.