Machine Learning Engineer

Brio Digital
Liverpool
1 day ago
Create job alert

Senior Machine Learning Engineer (Generative AI / LLMs)

Location: Fully Remote (UK-based)

Salary: £75,000 – £100,000 (depending on experience)

The Role

We’re hiring a Senior Machine Learning Engineer to lead the design and productionisation of Generative AI and Large Language Model (LLM) applications. This role sits at the heart of an AI-focused engineering team, delivering scalable, production-grade systems using GCP and Google’s AI ecosystem.

You’ll be a senior, hands-on engineer owning complex technical problems end to end, with a strong influence over architecture, tooling, and the future direction of LLM-powered products.

What You’ll Be Doing

  • Design, develop, and deploy advanced machine learning and deep learning models into production.
  • Architect scalable LLMOps pipelines on GCP / Vertex AI, including fine-tuning, vector search, and low-latency inference.
  • Build end-to-end LLM applications, leveraging RAG (Retrieval-Augmented Generation), agentic workflows, and prompt engineering.
  • Implement robust evaluation frameworks to monitor LLM quality, hallucinations, token usage, and content safety.
  • Develop and deploy autonomous or semi-autonomous agents using modern agent frameworks and Google AI tooling.
  • Collaborate with product and engineering teams to translate complex business requirements into ML-driven solutions.
  • Monitor, optimise, and continuously improve models in live production environments.
  • Contribute to the architecture and evolution of the AI platform and supporting data infrastructure.
  • Stay current with emerging research, tools, and best practices across ML and Generative AI.

What We’re Looking For

Essential

  • 5+ years’ experience in machine learning engineering or applied AI roles.
  • Recent, demonstrable experience with LLMs, Generative AI, and/or RAG-based systems.
  • Strong Python skills using frameworks such as PyTorch, TensorFlow, Hugging Face, or Google GenAI.
  • Experience with vector databases and retrieval-based architectures.
  • Proven experience designing and operating large-scale ML systems in production.
  • Strong experience with GCP Vertex AI (or equivalent cloud ML platforms).
  • Solid software engineering fundamentals: APIs, Docker, CI/CD, and Git.
  • Strong understanding of deep learning, statistical modelling, and optimisation techniques.


Nice to Have

  • Experience with agentic design patterns (e.g. ReAct, Chain-of-Thought, tool use).
  • Familiarity with LLM evaluation frameworks such as RAGAS or TruLens.
  • Experience fine-tuning large models or working with reinforcement learning techniques.
  • Background in mathematics, statistics, or theoretical computer science.
  • Understanding of data governance, bias mitigation, or model interpretability.

Why Join

  • Work on real, production-grade GenAI systems with clear business impact.
  • High autonomy and ownership in a senior, hands-on engineering role.
  • Fully remote working with a collaborative, distributed team.
  • Opportunity to influence architecture and long-term technical direction.
  • Competitive salary up to £100k, plus benefits.

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer - London

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.

AI Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we head into 2026, the AI hiring market in the UK is going through one of its biggest shake-ups yet. Economic conditions are still tight, some employers are cutting headcount, & AI itself is automating whole chunks of work. At the same time, demand for strong AI talent is still rising, salaries for in-demand skills remain high, & new roles are emerging around AI safety, governance & automation. Whether you are an AI job seeker planning your next move or a recruiter trying to build teams in a volatile market, understanding the key AI hiring trends for 2026 will help you stay ahead. This guide breaks down the most important trends to watch, what they mean in practice, & how to adapt – with practical actions for both candidates & hiring teams.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.