Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning Engineer

Skills Alliance
Liverpool
7 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer (Databricks)

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Develop novel cell embeddings that integrate multi-omics foundation models— transcriptomics, proteomics, epigenomics, and metabolomics—to capture comprehensive cellular signatures. Your work will enable precise predictions of drug effects, driving innovation in drug discovery.


Key Responsibilities:

Model Development:Design deep learning models integrating diverse omics data to create robust cell embeddings for digital twin technology.

Multi-Omics Integration:Develop and refine foundation models across omics platforms into a unified cell representation.

Collaboration:Work with experts in bioinformatics, drug discovery, and AI to validate models and integrate multi-modal data.

Client & Partner Engagement:Support product and service teams in translating AI models into real-world drug discovery applications.

Research Leadership:Stay at the forefront of AI and omics advancements, contributing to scientific publications and innovation.


Preferred Qualifications:

1.PhD/Postdoc in Computer Science (or related fields): Publications in top ML conferences (e.g., NeurIPS, ICLR, ICML, CVPR).

2.Strong ML/Applied Math Background:Expertise in advanced ML techniques.

3.Deep Learning Experience:Building and scaling AI models for omics or high dimensional biological data.

4.Multi-Omics Integration: Experience developing foundation models across omics datasets.

5.Collaborative Mindset:Track record of success in interdisciplinary teams and cross-functional projects.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we head into 2026, the AI hiring market in the UK is going through one of its biggest shake-ups yet. Economic conditions are still tight, some employers are cutting headcount, & AI itself is automating whole chunks of work. At the same time, demand for strong AI talent is still rising, salaries for in-demand skills remain high, & new roles are emerging around AI safety, governance & automation. Whether you are an AI job seeker planning your next move or a recruiter trying to build teams in a volatile market, understanding the key AI hiring trends for 2026 will help you stay ahead. This guide breaks down the most important trends to watch, what they mean in practice, & how to adapt – with practical actions for both candidates & hiring teams.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.